File size: 2,216 Bytes
d1e75f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: wav2vec2-large-xls-r-53m-gl-jupyter2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-large-xls-r-53m-gl-jupyter2
This model is a fine-tuned version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0941
- Wer: 0.0615
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 45
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.7298 | 3.36 | 400 | 0.2477 | 0.2493 |
| 0.1507 | 6.72 | 800 | 0.1294 | 0.1264 |
| 0.066 | 10.08 | 1200 | 0.1235 | 0.1161 |
| 0.0456 | 13.44 | 1600 | 0.1011 | 0.1001 |
| 0.0347 | 16.8 | 2000 | 0.1033 | 0.0909 |
| 0.0284 | 20.17 | 2400 | 0.1083 | 0.0861 |
| 0.0221 | 23.53 | 2800 | 0.1010 | 0.0761 |
| 0.0199 | 26.89 | 3200 | 0.0911 | 0.0754 |
| 0.0155 | 30.25 | 3600 | 0.1026 | 0.0743 |
| 0.0142 | 33.61 | 4000 | 0.1024 | 0.0719 |
| 0.0125 | 36.97 | 4400 | 0.0977 | 0.0676 |
| 0.0104 | 40.33 | 4800 | 0.0945 | 0.0664 |
| 0.0089 | 43.69 | 5200 | 0.0941 | 0.0615 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.1+cu111
- Datasets 1.18.3
- Tokenizers 0.10.3
|