File size: 8,183 Bytes
38f7d61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import copy
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import trunc_normal_
class VIT(nn.Module):
def __init__(self, embed_dim=64, nhead=8, num_encoder_layers=6, dim_feedforward=1024,
dropout=0.1, activation="relu", num_classes=23073):
super().__init__()
self.embed_dim = embed_dim
self.num_classes = num_classes
self.conv = torch.nn.Conv1d(1, embed_dim, kernel_size=32, stride=32, padding=0)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 141))
# -------------encoder----------------
sa_layer = SelfAttnLayer(embed_dim, nhead, dim_feedforward, dropout, activation)
self.encoder = SelfAttnModule(sa_layer, num_encoder_layers)
# ------------------------------------
self.norm_after = nn.LayerNorm(embed_dim)
self.cls_head = nn.Sequential(
nn.Linear(embed_dim, int(embed_dim * 4)),
nn.BatchNorm1d(int(embed_dim * 4)),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(int(embed_dim * 4), int(embed_dim * 4)),
nn.BatchNorm1d(int(embed_dim * 4)),
nn.ReLU(inplace=True),
nn.Dropout(0.5),
nn.Linear(int(embed_dim * 4), num_classes)
)
self._reset_parameters()
self.init_weights()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def init_weights(self):
trunc_normal_(self.cls_token, std=.02)
self.pos_embed.requires_grad = False
pos_embed = get_1d_sincos_pos_embed_from_grid(self.embed_dim, np.array(range(self.pos_embed.shape[2])))
self.pos_embed.data.copy_(torch.from_numpy(pos_embed).T.unsqueeze(0))
def bce_fineTune_init_weights(self):
for p in self.conv.parameters():
p.requires_grad = False
for p in self.encoder.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for p in self.cls_head.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
def forward(self, x):
N = x.shape[0]
if x.shape[1] == 2:
x = x[:, 1:, :]
x = x / 100
x = self.conv(x)
# flatten NxCxL to LxNxC
x = x.permute(2, 0, 1).contiguous()
cls_token = self.cls_token.expand(-1, N, -1)
x = torch.cat((cls_token, x), dim=0)
pos_embed = self.pos_embed.permute(2, 0, 1).contiguous().repeat(1, N, 1)
feats = self.encoder(x, pos_embed)
feats = self.norm_after(feats)
logits = self.cls_head(feats[0])
return logits
class ConvModule(nn.Module):
def __init__(self, drop_rate=0.):
super().__init__()
self.drop_rate = drop_rate
self.conv1 = nn.Conv1d(1, 64, kernel_size=35, stride=2, padding=17)
self.bn1 = nn.BatchNorm1d(64)
self.act1 = nn.ReLU()
self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
self.layer1 = Layer(64, 64, kernel_size=3, stride=2, downsample=True)
self.layer2 = Layer(64, 128, kernel_size=3, stride=2, downsample=True)
# self.layer3 = Layer(256, 256, kernel_size=3, stride=2, downsample=True)
self.maxpool2 = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.act1(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
# x = self.layer3(x)
x = self.maxpool2(x)
return x
class SelfAttnModule(nn.Module):
def __init__(self, encoder_layer, num_layers, norm=None):
super().__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, src, pos):
output = src
for layer in self.layers:
output = layer(output, pos)
if self.norm is not None:
output = self.norm(output)
return output
class SelfAttnLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
activation="relu"):
super().__init__()
self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def forward(self, src, pos):
q = k = with_pos_embed(src, pos)
src2 = self.self_attn(q, k, value=src)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
class Layer(nn.Module):
def __init__(self, inchannel, outchannel, kernel_size, stride, downsample):
super(Layer, self).__init__()
self.block1 = BasicBlock(inchannel, outchannel, kernel_size=kernel_size, stride=stride, downsample=downsample)
self.block2 = BasicBlock(outchannel, outchannel, kernel_size=kernel_size, stride=1)
def forward(self, x):
x = self.block1(x)
x = self.block2(x)
return x
class BasicBlock(nn.Module):
def __init__(self, inchannel, outchannel, kernel_size, stride, downsample=False):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv1d(inchannel, outchannel, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2)
self.bn1 = nn.BatchNorm1d(outchannel)
self.act1 = nn.ReLU(inplace=True)
self.conv2 = nn.Conv1d(outchannel, outchannel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
self.bn2 = nn.BatchNorm1d(outchannel)
self.act2 = nn.ReLU(inplace=True)
self.downsample = nn.Sequential(
nn.Conv1d(inchannel, outchannel, kernel_size=1, stride=2),
nn.BatchNorm1d(outchannel)
) if downsample else None
def forward(self, x):
shortcut = x
x = self.conv1(x)
x = self.bn1(x)
x = self.conv2(x)
x = self.bn2(x)
if self.downsample is not None:
shortcut = self.downsample(shortcut)
x += shortcut
x = self.act2(x)
return x
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
def _get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
"""
embed_dim: output dimension for each position
pos: a list of positions to be encoded: size (M,)
out: (M, D)
"""
assert embed_dim % 2 == 0
omega = np.arange(embed_dim // 2, dtype=np.float32)
omega /= embed_dim / 2.
omega = 1. / 10000 ** omega # (D/2,)
pos = pos.reshape(-1) # (M,)
out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
emb_sin = np.sin(out).astype(np.float32) # (M, D/2)
emb_cos = np.cos(out).astype(np.float32) # (M, D/2)
emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
return emb
|