File size: 8,183 Bytes
38f7d61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import copy

import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn.init import trunc_normal_


class VIT(nn.Module):

    def __init__(self, embed_dim=64, nhead=8, num_encoder_layers=6, dim_feedforward=1024,

                 dropout=0.1, activation="relu", num_classes=23073):
        super().__init__()

        self.embed_dim = embed_dim
        self.num_classes = num_classes

        self.conv = torch.nn.Conv1d(1, embed_dim, kernel_size=32, stride=32, padding=0)

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, 141))

        # -------------encoder----------------
        sa_layer = SelfAttnLayer(embed_dim, nhead, dim_feedforward, dropout, activation)
        self.encoder = SelfAttnModule(sa_layer, num_encoder_layers)
        # ------------------------------------

        self.norm_after = nn.LayerNorm(embed_dim)

        self.cls_head = nn.Sequential(
            nn.Linear(embed_dim, int(embed_dim * 4)),
            nn.BatchNorm1d(int(embed_dim * 4)),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(int(embed_dim * 4), int(embed_dim * 4)),
            nn.BatchNorm1d(int(embed_dim * 4)),
            nn.ReLU(inplace=True),
            nn.Dropout(0.5),
            nn.Linear(int(embed_dim * 4), num_classes)
        )

        self._reset_parameters()
        self.init_weights()

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def init_weights(self):
        trunc_normal_(self.cls_token, std=.02)

        self.pos_embed.requires_grad = False

        pos_embed = get_1d_sincos_pos_embed_from_grid(self.embed_dim, np.array(range(self.pos_embed.shape[2])))
        self.pos_embed.data.copy_(torch.from_numpy(pos_embed).T.unsqueeze(0))

    def bce_fineTune_init_weights(self):
        for p in self.conv.parameters():
            p.requires_grad = False

        for p in self.encoder.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)
        for p in self.cls_head.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, x):
        N = x.shape[0]
        if x.shape[1] == 2:
            x = x[:, 1:, :]

        x = x / 100
        x = self.conv(x)

        # flatten NxCxL to LxNxC
        x = x.permute(2, 0, 1).contiguous()

        cls_token = self.cls_token.expand(-1, N, -1)
        x = torch.cat((cls_token, x), dim=0)

        pos_embed = self.pos_embed.permute(2, 0, 1).contiguous().repeat(1, N, 1)
        feats = self.encoder(x, pos_embed)
        feats = self.norm_after(feats)
        logits = self.cls_head(feats[0])
        return logits


class ConvModule(nn.Module):
    def __init__(self, drop_rate=0.):
        super().__init__()
        self.drop_rate = drop_rate

        self.conv1 = nn.Conv1d(1, 64, kernel_size=35, stride=2, padding=17)
        self.bn1 = nn.BatchNorm1d(64)
        self.act1 = nn.ReLU()
        self.maxpool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)

        self.layer1 = Layer(64, 64, kernel_size=3, stride=2, downsample=True)
        self.layer2 = Layer(64, 128, kernel_size=3, stride=2, downsample=True)
        # self.layer3 = Layer(256, 256, kernel_size=3, stride=2, downsample=True)
        self.maxpool2 = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.act1(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        # x = self.layer3(x)
        x = self.maxpool2(x)
        return x


class SelfAttnModule(nn.Module):

    def __init__(self, encoder_layer, num_layers, norm=None):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src, pos):
        output = src

        for layer in self.layers:
            output = layer(output, pos)

        if self.norm is not None:
            output = self.norm(output)

        return output


class SelfAttnLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,

                 activation="relu"):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)

    def forward(self, src, pos):
        q = k = with_pos_embed(src, pos)
        src2 = self.self_attn(q, k, value=src)[0]
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src


class Layer(nn.Module):
    def __init__(self, inchannel, outchannel, kernel_size, stride, downsample):
        super(Layer, self).__init__()
        self.block1 = BasicBlock(inchannel, outchannel, kernel_size=kernel_size, stride=stride, downsample=downsample)
        self.block2 = BasicBlock(outchannel, outchannel, kernel_size=kernel_size, stride=1)

    def forward(self, x):
        x = self.block1(x)
        x = self.block2(x)
        return x


class BasicBlock(nn.Module):
    def __init__(self, inchannel, outchannel, kernel_size, stride, downsample=False):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv1d(inchannel, outchannel, kernel_size=kernel_size, stride=stride, padding=kernel_size // 2)
        self.bn1 = nn.BatchNorm1d(outchannel)
        self.act1 = nn.ReLU(inplace=True)
        self.conv2 = nn.Conv1d(outchannel, outchannel, kernel_size=kernel_size, stride=1, padding=kernel_size // 2)
        self.bn2 = nn.BatchNorm1d(outchannel)
        self.act2 = nn.ReLU(inplace=True)
        self.downsample = nn.Sequential(
            nn.Conv1d(inchannel, outchannel, kernel_size=1, stride=2),
            nn.BatchNorm1d(outchannel)
        ) if downsample else None

    def forward(self, x):
        shortcut = x
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.conv2(x)
        x = self.bn2(x)
        if self.downsample is not None:
            shortcut = self.downsample(shortcut)
        x += shortcut
        x = self.act2(x)
        return x


def _get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])


def _get_activation_fn(activation):
    """Return an activation function given a string"""
    if activation == "relu":
        return F.relu
    if activation == "gelu":
        return F.gelu
    if activation == "glu":
        return F.glu
    raise RuntimeError(F"activation should be relu/gelu, not {activation}.")


def with_pos_embed(tensor, pos):
    return tensor if pos is None else tensor + pos


def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
    """

    embed_dim: output dimension for each position

    pos: a list of positions to be encoded: size (M,)

    out: (M, D)

    """
    assert embed_dim % 2 == 0
    omega = np.arange(embed_dim // 2, dtype=np.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = np.einsum('m,d->md', pos, omega)  # (M, D/2), outer product

    emb_sin = np.sin(out).astype(np.float32)  # (M, D/2)
    emb_cos = np.cos(out).astype(np.float32)  # (M, D/2)

    emb = np.concatenate([emb_sin, emb_cos], axis=1)  # (M, D)
    return emb