update
Browse files- adapter_config.json +29 -0
- adapter_model.safetensors +3 -0
- special_tokens_map.json +17 -0
- tokenization_SEA_BPE.py +197 -0
- tokenizer.model +3 -0
- tokenizer_config.json +53 -0
adapter_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "/project/lt900048-ai24tn/models/aisingapore/sea-lion-7b-instruct",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": false,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layers_pattern": null,
|
| 10 |
+
"layers_to_transform": null,
|
| 11 |
+
"loftq_config": {},
|
| 12 |
+
"lora_alpha": 16,
|
| 13 |
+
"lora_dropout": 0.05,
|
| 14 |
+
"megatron_config": null,
|
| 15 |
+
"megatron_core": "megatron.core",
|
| 16 |
+
"modules_to_save": null,
|
| 17 |
+
"peft_type": "LORA",
|
| 18 |
+
"r": 64,
|
| 19 |
+
"rank_pattern": {},
|
| 20 |
+
"revision": null,
|
| 21 |
+
"target_modules": [
|
| 22 |
+
"down_proj",
|
| 23 |
+
"up_proj",
|
| 24 |
+
"Wqkv",
|
| 25 |
+
"out_proj"
|
| 26 |
+
],
|
| 27 |
+
"task_type": "CAUSAL_LM",
|
| 28 |
+
"use_rslora": false
|
| 29 |
+
}
|
adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c4cc80b197590dc1a3cb61e245fa52208bd8f3a52c2c216d3c28b86789c3aa52
|
| 3 |
+
size 135
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": {
|
| 3 |
+
"content": "<|endoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"pad_token": "<|endoftext|>",
|
| 10 |
+
"unk_token": {
|
| 11 |
+
"content": "<unk>",
|
| 12 |
+
"lstrip": false,
|
| 13 |
+
"normalized": false,
|
| 14 |
+
"rstrip": false,
|
| 15 |
+
"single_word": false
|
| 16 |
+
}
|
| 17 |
+
}
|
tokenization_SEA_BPE.py
ADDED
|
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from shutil import copyfile
|
| 3 |
+
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
|
| 4 |
+
import sentencepiece as spm
|
| 5 |
+
from tokenizers import processors
|
| 6 |
+
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
|
| 7 |
+
from transformers.utils import logging
|
| 8 |
+
|
| 9 |
+
logger = logging.get_logger(__name__)
|
| 10 |
+
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}
|
| 11 |
+
SPIECE_UNDERLINE = "▁"
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class SEABPETokenizer(PreTrainedTokenizer):
|
| 15 |
+
"""
|
| 16 |
+
Construct the SEA BPE Tokenizer tailored for SEA languages. Based on the Byte-Pair-Encoding with an expanded voculabulary size
|
| 17 |
+
|
| 18 |
+
Args:
|
| 19 |
+
vocab_file (`str`):
|
| 20 |
+
Path to the vocabulary file.
|
| 21 |
+
legacy (`bool`, *optional*, defaults to `True`):
|
| 22 |
+
Whether or not the `legacy` behaviour of the tokenizer should be used. Legacy is before the merge of #24622
|
| 23 |
+
which includes fixes to properly handle tokens that appear after special tokens.
|
| 24 |
+
legacy means we are not modifying existing tokenizers without knowing. (And we need to manually update those core tokenizers)
|
| 25 |
+
|
| 26 |
+
A simple example:
|
| 27 |
+
|
| 28 |
+
- `legacy=True`:
|
| 29 |
+
```python
|
| 30 |
+
>>> from transformers import T5Tokenizer
|
| 31 |
+
|
| 32 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=True)
|
| 33 |
+
>>> tokenizer.encode("Hello <extra_id_0>.")
|
| 34 |
+
[8774, 32099, 3, 5, 1]
|
| 35 |
+
```
|
| 36 |
+
- `legacy=False`:
|
| 37 |
+
```python
|
| 38 |
+
>>> from transformers import T5Tokenizer
|
| 39 |
+
|
| 40 |
+
>>> tokenizer = T5Tokenizer.from_pretrained("t5-base", legacy=False)
|
| 41 |
+
>>> tokenizer.encode("Hello <extra_id_0>.") # the extra space `[3]` is no longer here
|
| 42 |
+
[8774, 32099, 5, 1]
|
| 43 |
+
```
|
| 44 |
+
Checkout the pull request and the issue [here](https://github.com/huggingface/transformers/pull/24565) for
|
| 45 |
+
more details.
|
| 46 |
+
|
| 47 |
+
"""
|
| 48 |
+
|
| 49 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 50 |
+
|
| 51 |
+
def __init__(
|
| 52 |
+
self,
|
| 53 |
+
vocab_file,
|
| 54 |
+
unk_token="<unk>",
|
| 55 |
+
bos_token=None,
|
| 56 |
+
eos_token="<|endoftext|>",
|
| 57 |
+
pad_token=None,
|
| 58 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
| 59 |
+
add_bos_token=False,
|
| 60 |
+
add_eos_token=False,
|
| 61 |
+
clean_up_tokenization_spaces=False,
|
| 62 |
+
legacy=None,
|
| 63 |
+
**kwargs,
|
| 64 |
+
):
|
| 65 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
| 66 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 67 |
+
self.sp_model.Load(vocab_file)
|
| 68 |
+
super().__init__(
|
| 69 |
+
bos_token=bos_token,
|
| 70 |
+
eos_token=eos_token,
|
| 71 |
+
unk_token=unk_token,
|
| 72 |
+
pad_token=pad_token,
|
| 73 |
+
add_bos_token=add_bos_token,
|
| 74 |
+
add_eos_token=add_eos_token,
|
| 75 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
| 76 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
| 77 |
+
legacy=legacy,
|
| 78 |
+
**kwargs,
|
| 79 |
+
)
|
| 80 |
+
if legacy is None:
|
| 81 |
+
logger.warning_once(
|
| 82 |
+
f"You are using the default legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to read the related pull request available at https://github.com/huggingface/transformers/pull/24565, and set the legacy attribute accordingly."
|
| 83 |
+
)
|
| 84 |
+
legacy = True
|
| 85 |
+
self.legacy = legacy
|
| 86 |
+
self.vocab_file = vocab_file
|
| 87 |
+
self.add_bos_token = add_bos_token
|
| 88 |
+
self.add_eos_token = add_eos_token
|
| 89 |
+
|
| 90 |
+
def __getstate__(self):
|
| 91 |
+
state = self.__dict__.copy()
|
| 92 |
+
state["sp_model"] = None
|
| 93 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
| 94 |
+
return state
|
| 95 |
+
|
| 96 |
+
def __setstate__(self, d):
|
| 97 |
+
self.__dict__ = d
|
| 98 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
| 99 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
| 100 |
+
|
| 101 |
+
@property
|
| 102 |
+
def vocab_size(self):
|
| 103 |
+
"""Returns vocab size"""
|
| 104 |
+
return self.sp_model.get_piece_size()
|
| 105 |
+
|
| 106 |
+
def get_vocab(self):
|
| 107 |
+
"""Returns vocab as a dict"""
|
| 108 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
| 109 |
+
vocab.update(self.added_tokens_encoder)
|
| 110 |
+
return vocab
|
| 111 |
+
|
| 112 |
+
def tokenize(self, text, **kwargs) -> List[str]:
|
| 113 |
+
if not self.legacy:
|
| 114 |
+
text = SPIECE_UNDERLINE + text.replace(SPIECE_UNDERLINE, " ")
|
| 115 |
+
return super().tokenize(text, **kwargs)
|
| 116 |
+
|
| 117 |
+
def _tokenize(self, text):
|
| 118 |
+
"""
|
| 119 |
+
Returns a tokenized string.
|
| 120 |
+
|
| 121 |
+
Since the sentencepiece internal model always adds a SPIECE_UNDERLINE, at the beginning of the provided text,
|
| 122 |
+
we need to remove it by hand when the current text is a subsequence. This happens whenever the `self.tokenize`
|
| 123 |
+
function is called with specials tokens: the input is split on the special tokens, and each subsequence is
|
| 124 |
+
passed to `_tokenize`. Thus if a subsequence did not start with a `" "` or SPIECE_UNDERLINE, we have to remove
|
| 125 |
+
the extra `SPIECE_UNDERLINE` prepended.
|
| 126 |
+
"""
|
| 127 |
+
if not self.legacy:
|
| 128 |
+
is_first = text.startswith(SPIECE_UNDERLINE)
|
| 129 |
+
if is_first:
|
| 130 |
+
text = text[1:]
|
| 131 |
+
tokens = self.sp_model.encode(text, out_type=str)
|
| 132 |
+
if (
|
| 133 |
+
not self.legacy
|
| 134 |
+
and (not is_first)
|
| 135 |
+
and (not text.startswith(" "))
|
| 136 |
+
and tokens[0].startswith(SPIECE_UNDERLINE)
|
| 137 |
+
):
|
| 138 |
+
tokens = ([tokens[0][1:]] if len(tokens[0]) > 1 else []) + tokens[1:]
|
| 139 |
+
return tokens
|
| 140 |
+
|
| 141 |
+
def _convert_token_to_id(self, token):
|
| 142 |
+
"""Converts a token (str) in an id using the vocab."""
|
| 143 |
+
return self.sp_model.piece_to_id(token)
|
| 144 |
+
|
| 145 |
+
def _convert_id_to_token(self, index):
|
| 146 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
| 147 |
+
token = self.sp_model.IdToPiece(index)
|
| 148 |
+
return token
|
| 149 |
+
|
| 150 |
+
def convert_tokens_to_string(self, tokens):
|
| 151 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
| 152 |
+
current_sub_tokens = []
|
| 153 |
+
out_string = ""
|
| 154 |
+
prev_is_special = False
|
| 155 |
+
for i, token in enumerate(tokens):
|
| 156 |
+
if token in self.all_special_tokens:
|
| 157 |
+
if not prev_is_special and i != 0:
|
| 158 |
+
out_string += " "
|
| 159 |
+
out_string += self.sp_model.decode(current_sub_tokens) + token
|
| 160 |
+
prev_is_special = True
|
| 161 |
+
current_sub_tokens = []
|
| 162 |
+
else:
|
| 163 |
+
current_sub_tokens.append(token)
|
| 164 |
+
prev_is_special = False
|
| 165 |
+
out_string += self.sp_model.decode(current_sub_tokens)
|
| 166 |
+
return out_string
|
| 167 |
+
|
| 168 |
+
def save_vocabulary(
|
| 169 |
+
self, save_directory, filename_prefix: Optional[str] = None
|
| 170 |
+
) -> Tuple[str]:
|
| 171 |
+
"""
|
| 172 |
+
Save the vocabulary and special tokens file to a directory.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
save_directory (`str`):
|
| 176 |
+
The directory in which to save the vocabulary.
|
| 177 |
+
|
| 178 |
+
Returns:
|
| 179 |
+
`Tuple(str)`: Paths to the files saved.
|
| 180 |
+
"""
|
| 181 |
+
if not os.path.isdir(save_directory):
|
| 182 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
| 183 |
+
return
|
| 184 |
+
out_vocab_file = os.path.join(
|
| 185 |
+
save_directory,
|
| 186 |
+
(filename_prefix + "-" if filename_prefix else "")
|
| 187 |
+
+ VOCAB_FILES_NAMES["vocab_file"],
|
| 188 |
+
)
|
| 189 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(
|
| 190 |
+
out_vocab_file
|
| 191 |
+
) and os.path.isfile(self.vocab_file):
|
| 192 |
+
copyfile(self.vocab_file, out_vocab_file)
|
| 193 |
+
elif not os.path.isfile(self.vocab_file):
|
| 194 |
+
with open(out_vocab_file, "wb") as fi:
|
| 195 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
| 196 |
+
fi.write(content_spiece_model)
|
| 197 |
+
return (out_vocab_file,)
|
tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:13c014021ed065b9a2d79b17af584443799ef4c2cbf64262ac57ad2249dd7df0
|
| 3 |
+
size 132
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"0": {
|
| 6 |
+
"content": "<unk>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"1": {
|
| 14 |
+
"content": "<|endoftext|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"2": {
|
| 22 |
+
"content": "<|endofline|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"3": {
|
| 30 |
+
"content": "<|padding|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
}
|
| 37 |
+
},
|
| 38 |
+
"auto_map": {
|
| 39 |
+
"AutoTokenizer": [
|
| 40 |
+
"tokenization_SEA_BPE.SEABPETokenizer",
|
| 41 |
+
null
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
"bos_token": null,
|
| 45 |
+
"clean_up_tokenization_spaces": false,
|
| 46 |
+
"eos_token": "<|endoftext|>",
|
| 47 |
+
"legacy": true,
|
| 48 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 49 |
+
"pad_token": "<|endoftext|>",
|
| 50 |
+
"sp_model_kwargs": {},
|
| 51 |
+
"tokenizer_class": "SEABPETokenizer",
|
| 52 |
+
"unk_token": "<unk>"
|
| 53 |
+
}
|