File size: 6,157 Bytes
9487267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import torch.nn as nn
from transformers import CLIPVisionModel


class clip_vit_large_patch14_336(nn.Module):

    def __init__(self, vision_tower, use_resize_pos=True):
        super().__init__()

        self.is_loaded = False
        self.is_resize_pos = False

        self.vision_tower_name = vision_tower
        self.select_layer = -1
        self.select_feature = 'patch'
        self.load_model()

        #change model to input shape[490*490]
        if use_resize_pos:
            self.resize_pos()

    def load_model(self):
        self.vision_tower = CLIPVisionModel.from_pretrained(
            self.vision_tower_name)
        self.vision_tower.requires_grad_(False)

        self.is_loaded = True

    def resize_pos(self):
        pos_embed_checkpoint = self.vision_tower.vision_model.embeddings.position_embedding.weight
        pos_embed_checkpoint = pos_embed_checkpoint.unsqueeze(0)
        orig_size = 24 #336/14
        new_size = 35 #490/14

        if pos_embed_checkpoint.shape[1] == new_size**2 + 1:
            self.is_resize_pos = True
        else:
            embedding_size = pos_embed_checkpoint.shape[-1]
            num_extra_tokens = 1
            new_num = new_size**2 + num_extra_tokens
            #print('Position interpolate from %dx%d to %dx%d' %
            #      (orig_size, orig_size, new_size, new_size))
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
                                            embedding_size).permute(
                                                0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens,
                size=(new_size, new_size),
                mode='bicubic',
                align_corners=False)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)

            new_pos_embed = new_pos_embed.squeeze(0)

            self.vision_tower.vision_model.embeddings.position_embedding = torch.nn.Embedding(
                new_num, 1024)
            self.vision_tower.vision_model.embeddings.position_embedding.weight = torch.nn.Parameter(
                new_pos_embed.to(pos_embed_checkpoint.dtype))
            self.vision_tower.vision_model.embeddings.position_ids = torch.arange(
                new_num).expand((1, -1))

            self.is_resize_pos = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(
                f'Unexpected select feature: {self.select_feature}')
        return image_features

    def forward(self, images):
        if not self.is_loaded:
            self.load_model()
        if type(images) is list: # not batch infurence speed!
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(
                    image.to(device=self.device,
                             dtype=self.dtype).unsqueeze(0),
                    output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(
                    image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(
                images.to(device=self.device, dtype=self.dtype),
                output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(
                images.dtype)

        return image_features

    @property
    def device(self):
        return self.vision_tower.device
    
    @property
    def dtype(self):
        return self.vision_tower.dtype

class DFN5B_CLIP_ViT_H_14_378(nn.Module):

    def __init__(self, vision_tower):
        super().__init__()

        self.is_loaded = False
        self.is_resize_pos = False

        self.vision_tower_name = vision_tower
        self.select_layer = -1
        self.select_feature = 'patch'
        self.load_model()

    def load_model(self):
        self.vision_tower = CLIPVisionModel.from_pretrained(
            self.vision_tower_name)
        self.vision_tower.requires_grad_(False)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(
                f'Unexpected select feature: {self.select_feature}')
        return image_features

    def forward(self, images):
        if not self.is_loaded:
            self.load_model()
        if type(images) is list: # not batch infurence speed!
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(
                    image.to(device=self.device,
                             dtype=self.dtype).unsqueeze(0),
                    output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(
                    image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(
                images.to(device=self.device, dtype=self.dtype),
                output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(
                images.dtype)

        return image_features

    @property
    def device(self):
        return self.vision_tower.device
    
    @property
    def dtype(self):
        return self.vision_tower.dtype