File size: 20,121 Bytes
9487267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
#basic backage
import os
import copy
import warnings
from PIL import Image
from typing import Optional, Tuple, Union, List, Callable

#torch and transformer
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from torch.distributions.categorical import Categorical

from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode


from transformers.modeling_utils import PreTrainedModel
from transformers.generation.streamers import BaseStreamer
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.modeling_outputs import CausalLMOutputWithPast


#mcmd
from .configuration_mcmd import mcmdConfig
from .Vision_Tower import clip_vit_large_patch14_336,DFN5B_CLIP_ViT_H_14_378
from .Vision_Project import mlp2x_gelu

def build_lm_model_tokenizer(lm_model_name : str, lm_tokenizer_name : str):
    model = AutoModelForCausalLM.from_pretrained(
        lm_model_name,
        torch_dtype="auto"
    )
    tokenizer = AutoTokenizer.from_pretrained(lm_tokenizer_name)
    return model,tokenizer

def build_vision_projector(vision_config):
    if vision_config=='mlp2x_gelu':
        return mlp2x_gelu(vision_config)

def build_vision_tower(vision_tower_name=''):
    if vision_tower_name.endswith('clip-vit-large-patch14-336'):
        return clip_vit_large_patch14_336(vision_tower_name,use_resize_pos=True)
    elif vision_tower_name.endswith('DFN5B-CLIP-ViT-H-14-378'):
        return DFN5B_CLIP_ViT_H_14_378(vision_tower_name)

class mcmdPreTrainedModel(PreTrainedModel):
    # config_class = mcmdConfig

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()


class mcmdForCausalLM(mcmdPreTrainedModel):
    _auto_class = 'AutoModelForCausalLM'

    def __init__(self, config):
        super().__init__(config)
        
        #Initialize language model 
        self.max_length = config.max_length
        self.vocab_size = config.lm_model['vocab_size']
        self.lm_model,self.lm_tokenizer = build_lm_model_tokenizer(config.lm_path,config.lm_path)

        #Initialize vit and vision_proj
        self.vit = build_vision_tower(config.clip_path)
        self.vision_proj = build_vision_projector(config.vision_config)

        # Initialize vis_processor for Image Preprocessing. The mean and std is equal in dfn5b and clip-vit
        self.vis_processor = transforms.Compose([
            transforms.Resize((config.input_img_size, config.input_img_size),
                              interpolation=InterpolationMode.BICUBIC),
            transforms.ToTensor(),
            transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
                                 (0.26862954, 0.26130258, 0.27577711)),
        ])

        self.eos_token_id = self.lm_tokenizer.eos_token_id # 151645 <|im_end|>

    def print_trainable_parameters(self):
        print('可训练参数:')
        trainable_params = 0
        all_param = 0
        for _, param in self.named_parameters():
            all_param += param.numel()
            if param.requires_grad:
                trainable_params += param.numel()
        print(f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}")

        print('可训练的模块:')
        for name, param in self.named_parameters():
            if param.requires_grad:
                print(name, param.shape)
    
    def print_model_layers_and_parameters(self):
        print('模型参数:')
        for name, module in self.named_modules():
            if hasattr(module, 'weight'):
                num_params = sum(p.numel() for p in module.parameters() if p.requires_grad)
                print(f"Layer: {name}, Type: {module.__class__.__name__}, Trainable Parameters: {num_params}")
            else:
                print(f"Layer: {name}, Type: {module.__class__.__name__}, No trainable parameters")
        
    def print_tokens_labels(self, tokens: List[int], target: List[int]):
        print("Sanity Check >>>>>>>>>>>>>")
        temp_tokens=copy.deepcopy(tokens[0].tolist())
        temp_target=copy.deepcopy(target[0].tolist())
        save_name='check_token_target.txt'
        if os.path.exists(save_name):
            os.remove(save_name)
        ff = open(save_name,'a+')
        for t, m in zip(temp_tokens, temp_target):
            if t<0:
                decoded='<Image Data>'
            else:
                decoded = self.lm_tokenizer.batch_decode([t], skip_special_tokens=False)[0]
            print("%20s: %6d -> %6d" % (repr(decoded), t, m))
            ff.write("%20s: %6d -> %6d\n" % (repr(decoded), t, m))
        ff.close()
        print("<<<<<<<<<<<<< Sanity Check")
        assert len(tokens) == len(target), f"length mismatch: {len(tokens)} vs {len(target)}"

    def img2emb(self, image):
        image=image.bfloat16()
        img_embeds = self.vision_proj(self.vit(image.to(self.device)))
        atts_img = torch.ones(
            img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)

        img_target = torch.ones(
            img_embeds.size()[:2], dtype=torch.long).to(
                img_embeds.device) * -100

        return img_embeds, atts_img, img_target

    def encode_img(self, image):
        if image is None:
            return None
        if isinstance(image, str):
            image = Image.open(image).convert('RGB')
            # Image Preprocessing
            # unsqueeze insert 1 dim in front of 0 
            # image is [1, 3, 490, 490]
            image = self.vis_processor(image).unsqueeze(0).to(self.device)
        else:
            assert isinstance(image, torch.Tensor)

        img_embeds, _, _ = self.img2emb(image)
        '''
        img_embeds : [1, 1225, 4096] 1225?
        atts_img = torch.ones([1, 1225])
        img_target = torch.ones([1, 1225]) * -100
        '''
        return img_embeds

    def get_tensor_image(self,fns):
        image_data=[]

        for one in fns:
            t_one=self.encode_img(one)
            image_data.append(t_one)

        image = torch.cat(image_data, dim=0)

        return image


    def interleav_wrap_chat(self, messages, image):

        #Deal prompt using qwen2 template, which is from transformers/tokenization_utils_base.py
        prompt = self.lm_tokenizer.apply_chat_template(
            messages,
            tokenize=False,
            add_generation_prompt=True
        )
        '''
        repr(prompt) add_generation_prompt=True : '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n<|im_start|>assistant\n' 
        repr(prompt) add_generation_prompt=False: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n'
        '''

        if image is None:
            im_len=0
            image_nums=0
            parts = prompt.split('<ImageHere>')
            print(prompt.split('<ImageHere>'))
            assert len(prompt.split('<ImageHere>'))==1
        else:
            im_len = image.shape[1] #1225 730
            image_nums = len(image)
            parts = prompt.split('<ImageHere>')
        wrap_embeds = []
        temp_len = 0

        if len(parts) != image_nums + 1:
            raise ValueError('Invalid <ImageHere> prompt format.')
    
        for idx, part in enumerate(parts):
            if len(part) > 0:
                part_tokens = self.lm_tokenizer(part, return_tensors='pt').to(self.device)
                part_embeds = self.lm_model.model.embed_tokens(
                    part_tokens.input_ids)
                wrap_embeds.append(part_embeds)
                
                temp_len += part_embeds.shape[1]
            if idx < image_nums:
                wrap_embeds.append(image[idx].unsqueeze(0))
                temp_len += im_len
    
            if temp_len > self.max_length:
                break

        wrap_embeds = torch.cat(wrap_embeds, dim=1) #torch.Size([1, 2481, 3584])
        wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)

        inputs = {
            'inputs_embeds': wrap_embeds
        }
        return inputs

    def mask_user_targets(self, input_ids):
        target_batch = []
        for bs in range(input_ids.shape[0]):
            ids = input_ids[bs]
            targets = copy.deepcopy(ids)
            im_round=0
            id_im_start=0
            # id_im_end=0
            for i, temp_id in enumerate(ids):
                if temp_id == 151644:
                    im_round+=1
                    if im_round==2:
                        id_im_start=0
                        targets[id_im_start:i + 1] = -100
                        id_im_start=i
                    elif im_round%2==0:
                        id_im_start=i
                    elif im_round%2==1:
                        targets[id_im_start:i + 3] = -100
                # if temp_id == 151645:
                #     if im_round==1:
                #         id_im_end=i


            target_batch.append(targets.unsqueeze(0))

        target_batch = torch.cat(target_batch, dim=0)
        return target_batch

    def interleav_wrap(self, img_list, text_list):
        # Initialize lists to store the processed embeddings, attention masks, and targets.
        wrap_embeds_list, wrap_atts_list = [], []
        wrap_target_list = []

        # Iterate over pairs of images and texts.
        for image, text in zip(img_list, text_list):
            # Convert the image to embeddings using the method `img2emb`.
            img_embeds, atts_img, img_target = self.img2emb(image)

            # Get the first element of the text (assuming it's a list).
            text = text[0]
            # Split the text into parts where `<ImageHere>` is found.
            parts = text.split('<ImageHere>')

            # Initialize lists to store tokens, embeddings, and attention masks for the current item.
            wrap_tokens, wrap_embeds, wrap_atts = [], [], []
            
            # Track the total length of the sequence being built.
            temp_len = 0
            
            # Get the number of images and the length of each image embedding.
            image_nums, im_len = img_embeds.shape[:2]

            # Process each part of the split text.
            for idx, part in enumerate(parts):
                # If the part is not empty, process it as text.
                if len(part) > 0:
                    # Tokenize the text part.
                    part_tokens = self.lm_tokenizer(
                        part,
                        return_tensors='pt',
                        padding='longest').to(self.device)
                    
                    # Append the token IDs, embeddings, and attention mask to their respective lists.
                    wrap_tokens.append(part_tokens.input_ids)
                    part_embeds = self.lm_model.model.embed_tokens(part_tokens.input_ids)
                    wrap_embeds.append(part_embeds)
                    wrap_atts.append(part_tokens.attention_mask)
                    
                    # Update the total length of the sequence.
                    temp_len += part_embeds.shape[1]
                
                # If there are more images, append the image target, embeddings, and attention mask.
                if idx < image_nums:
                    wrap_tokens.append(img_target[idx].unsqueeze(0))
                    wrap_embeds.append(img_embeds[idx].unsqueeze(0))
                    wrap_atts.append(atts_img[idx].unsqueeze(0))
                    
                    # Update the total length of the sequence.
                    temp_len += im_len
                
                # Break the loop if the total length exceeds the maximum length.
                if temp_len > self.max_length:
                    break

            # Concatenate the tokens, embeddings, and attention masks.
            wrap_tokens = torch.cat(wrap_tokens, dim=1)
            wrap_embeds = torch.cat(wrap_embeds, dim=1)
            wrap_atts = torch.cat(wrap_atts, dim=1)

            # print('wrap_tokens',wrap_tokens.shape)
            # print('wrap_embeds',wrap_embeds.shape)
            # print('wrap_atts',wrap_atts.shape)

            # Mask the targets for the tokens.
            wrap_target = self.mask_user_targets(wrap_tokens).to(self.device)

            # Truncate the concatenated tensors to the max length.
            wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device)
            wrap_atts = wrap_atts[:, :self.max_length].to(self.device)
            wrap_target = wrap_target[:, :self.max_length].to(self.device)

            # self.print_tokens_labels(wrap_tokens, wrap_target)


            # Add the processed data to the corresponding lists.
            wrap_embeds_list.append(wrap_embeds)
            wrap_atts_list.append(wrap_atts)
            wrap_target_list.append(wrap_target)

        # Concatenate all the processed data from different items.
        wrap_embeds = torch.cat(wrap_embeds_list)
        wrap_atts = torch.cat(wrap_atts_list)
        wrap_target = torch.cat(wrap_target_list)

        # Return the concatenated embeddings, attention masks, and targets.
        return wrap_embeds, wrap_atts, wrap_target

    def text2emb(self, text, add_special=False):

        to_regress_tokens = self.lm_tokenizer(
                        text,
                        return_tensors='pt',
                        padding='longest').to(self.device)
        to_regress_tokens.input_ids
        targets = self.mask_user_targets(to_regress_tokens.input_ids)
        targets = targets.to(self.device)

        # self.print_tokens_labels(to_regress_tokens.input_ids, targets)

        return to_regress_tokens, targets

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        r"""
        Args:
            labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
                Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
                config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
                (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Returns:

        ```"""
        # prepared for train mode
        samples = kwargs.get('samples', None)
        if samples:
            if samples['data_type'][0] == 'text':
                has_img = False
            elif samples['data_type'][0] == 'multi':
                has_img = True
            else:
                raise NotImplementedError

            # encode text
            text = samples['text_input']
            # encode image
            if has_img:
                image = samples['image']

                to_regress_embeds, attention_mask, targets = self.interleav_wrap(
                    image, text)
            else:
                to_regress_tokens, targets = self.text2emb(#-------------------------------------------------------------------------------------------
                    text, add_special=True)
                to_regress_embeds = self.lm_model.model.embed_tokens(#-------------------------------------------------------------------------------------------
                    to_regress_tokens.input_ids)
                attention_mask = to_regress_tokens.attention_mask

            inputs_embeds = to_regress_embeds[:, :self.max_length]
            attention_mask = attention_mask[:, :self.max_length]
            targets = targets[:, :self.max_length]
            labels = targets


        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        outputs = self.lm_model.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        hidden_states = outputs[0]
        logits = self.lm_model.lm_head(hidden_states)
        logits = logits.float()

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )
    
    @torch.no_grad()
    def chat(
        self,
        messages,
        images: List[str] = None,
        streamer: Optional[BaseStreamer] = None,
        max_new_tokens: int = 1024,
        do_sample: bool = True,
        num_beams: int = 1,
        temperature: float = 1.0,
        top_p: float = 0.8,
        repetition_penalty: float=1.005,
        **kwargs,
    ):
        if images!=[]:
            print('images ',images)
            image_pt=self.get_tensor_image(images)
        else:
            image_pt=None
        inputs=self.interleav_wrap_chat(messages,image_pt)

        inputs = {
            k: v.to(self.device)
            for k, v in inputs.items() if torch.is_tensor(v)
        }
        # also add end-of-assistant token in eos token id to avoid unnecessary generation
        eos_token_id = [
            self.eos_token_id
        ]
        outputs = self.lm_model.generate(
            **inputs,
            streamer=streamer,
            max_new_tokens=max_new_tokens,
            num_beams=num_beams,
            do_sample=do_sample,
            temperature=temperature,
            top_p=top_p,
            eos_token_id=eos_token_id,
            repetition_penalty=repetition_penalty,
            **kwargs,
        )

        response = self.lm_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
        messages+=[{"role": "assistant", "content": response}]

        return response, messages