|
import math |
|
import re |
|
import torch |
|
import torch.nn as nn |
|
|
|
class IdentityMap(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, x, *args, **kwargs): |
|
return x |
|
|
|
@property |
|
def config(self): |
|
return {'mm_projector_type': 'identity'} |
|
|
|
def mlp2x_gelu(projector_type): |
|
|
|
mm_hidden_size = 1280 |
|
hidden_size = 3584 |
|
|
|
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) |
|
if mlp_gelu_match: |
|
mlp_depth = int(mlp_gelu_match.group(1)) |
|
modules = [nn.Linear(mm_hidden_size, hidden_size)] |
|
for _ in range(1, mlp_depth): |
|
modules.append(nn.GELU()) |
|
modules.append(nn.Linear(hidden_size, hidden_size)) |
|
return nn.Sequential(*modules) |
|
|
|
if projector_type == 'identity': |
|
return IdentityMap() |
|
|
|
raise ValueError(f'Unknown projector type: {projector_type}') |