|
|
|
import os |
|
import copy |
|
import warnings |
|
from PIL import Image |
|
from typing import Optional, Tuple, Union, List, Callable |
|
|
|
|
|
import torch |
|
from torch import nn |
|
from torch.nn import CrossEntropyLoss |
|
from torch.distributions.categorical import Categorical |
|
|
|
from torchvision import transforms |
|
from torchvision.transforms.functional import InterpolationMode |
|
|
|
|
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.generation.streamers import BaseStreamer |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
|
|
|
|
|
from .configuration_mcmd import mcmdConfig |
|
from .Vision_Tower import clip_vit_large_patch14_336,DFN5B_CLIP_ViT_H_14_378 |
|
from .Vision_Project import mlp2x_gelu |
|
|
|
def build_lm_model_tokenizer(lm_model_name : str, lm_tokenizer_name : str): |
|
model = AutoModelForCausalLM.from_pretrained( |
|
lm_model_name, |
|
torch_dtype="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(lm_tokenizer_name) |
|
return model,tokenizer |
|
|
|
def build_vision_projector(vision_config): |
|
if vision_config=='mlp2x_gelu': |
|
return mlp2x_gelu(vision_config) |
|
|
|
def build_vision_tower(vision_tower_name=''): |
|
if vision_tower_name.endswith('clip-vit-large-patch14-336'): |
|
return clip_vit_large_patch14_336(vision_tower_name,use_resize_pos=True) |
|
elif vision_tower_name.endswith('DFN5B-CLIP-ViT-H-14-378'): |
|
return DFN5B_CLIP_ViT_H_14_378(vision_tower_name) |
|
|
|
class mcmdPreTrainedModel(PreTrainedModel): |
|
|
|
|
|
def _init_weights(self, module): |
|
std = self.config.initializer_range |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
|
|
|
|
class mcmdForCausalLM(mcmdPreTrainedModel): |
|
_auto_class = 'AutoModelForCausalLM' |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
|
|
self.max_length = config.max_length |
|
self.vocab_size = config.lm_model['vocab_size'] |
|
self.lm_model,self.lm_tokenizer = build_lm_model_tokenizer(config.lm_path,config.lm_path) |
|
|
|
|
|
self.vit = build_vision_tower(config.clip_path) |
|
self.vision_proj = build_vision_projector(config.vision_config) |
|
|
|
|
|
self.vis_processor = transforms.Compose([ |
|
transforms.Resize((config.input_img_size, config.input_img_size), |
|
interpolation=InterpolationMode.BICUBIC), |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), |
|
(0.26862954, 0.26130258, 0.27577711)), |
|
]) |
|
|
|
self.eos_token_id = self.lm_tokenizer.eos_token_id |
|
|
|
def print_trainable_parameters(self): |
|
print('可训练参数:') |
|
trainable_params = 0 |
|
all_param = 0 |
|
for _, param in self.named_parameters(): |
|
all_param += param.numel() |
|
if param.requires_grad: |
|
trainable_params += param.numel() |
|
print(f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param:.2f}") |
|
|
|
print('可训练的模块:') |
|
for name, param in self.named_parameters(): |
|
if param.requires_grad: |
|
print(name, param.shape) |
|
|
|
def print_model_layers_and_parameters(self): |
|
print('模型参数:') |
|
for name, module in self.named_modules(): |
|
if hasattr(module, 'weight'): |
|
num_params = sum(p.numel() for p in module.parameters() if p.requires_grad) |
|
print(f"Layer: {name}, Type: {module.__class__.__name__}, Trainable Parameters: {num_params}") |
|
else: |
|
print(f"Layer: {name}, Type: {module.__class__.__name__}, No trainable parameters") |
|
|
|
def print_tokens_labels(self, tokens: List[int], target: List[int]): |
|
print("Sanity Check >>>>>>>>>>>>>") |
|
temp_tokens=copy.deepcopy(tokens[0].tolist()) |
|
temp_target=copy.deepcopy(target[0].tolist()) |
|
save_name='check_token_target.txt' |
|
if os.path.exists(save_name): |
|
os.remove(save_name) |
|
ff = open(save_name,'a+') |
|
for t, m in zip(temp_tokens, temp_target): |
|
if t<0: |
|
decoded='<Image Data>' |
|
else: |
|
decoded = self.lm_tokenizer.batch_decode([t], skip_special_tokens=False)[0] |
|
print("%20s: %6d -> %6d" % (repr(decoded), t, m)) |
|
ff.write("%20s: %6d -> %6d\n" % (repr(decoded), t, m)) |
|
ff.close() |
|
print("<<<<<<<<<<<<< Sanity Check") |
|
assert len(tokens) == len(target), f"length mismatch: {len(tokens)} vs {len(target)}" |
|
|
|
def img2emb(self, image): |
|
image=image.bfloat16() |
|
img_embeds = self.vision_proj(self.vit(image.to(self.device))) |
|
atts_img = torch.ones( |
|
img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device) |
|
|
|
img_target = torch.ones( |
|
img_embeds.size()[:2], dtype=torch.long).to( |
|
img_embeds.device) * -100 |
|
|
|
return img_embeds, atts_img, img_target |
|
|
|
def encode_img(self, image): |
|
if image is None: |
|
return None |
|
if isinstance(image, str): |
|
image = Image.open(image).convert('RGB') |
|
|
|
|
|
|
|
image = self.vis_processor(image).unsqueeze(0).to(self.device) |
|
else: |
|
assert isinstance(image, torch.Tensor) |
|
|
|
img_embeds, _, _ = self.img2emb(image) |
|
''' |
|
img_embeds : [1, 1225, 4096] 1225? |
|
atts_img = torch.ones([1, 1225]) |
|
img_target = torch.ones([1, 1225]) * -100 |
|
''' |
|
return img_embeds |
|
|
|
def get_tensor_image(self,fns): |
|
image_data=[] |
|
|
|
for one in fns: |
|
t_one=self.encode_img(one) |
|
image_data.append(t_one) |
|
|
|
image = torch.cat(image_data, dim=0) |
|
|
|
return image |
|
|
|
|
|
def interleav_wrap_chat(self, messages, image): |
|
|
|
|
|
prompt = self.lm_tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
''' |
|
repr(prompt) add_generation_prompt=True : '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n<|im_start|>assistant\n' |
|
repr(prompt) add_generation_prompt=False: '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n比较一下下面这两张图片,第一张<ImageHere>,\n第二张<ImageHere><|im_end|>\n' |
|
''' |
|
|
|
if image is None: |
|
im_len=0 |
|
image_nums=0 |
|
parts = prompt.split('<ImageHere>') |
|
print(prompt.split('<ImageHere>')) |
|
assert len(prompt.split('<ImageHere>'))==1 |
|
else: |
|
im_len = image.shape[1] |
|
image_nums = len(image) |
|
parts = prompt.split('<ImageHere>') |
|
wrap_embeds = [] |
|
temp_len = 0 |
|
|
|
if len(parts) != image_nums + 1: |
|
raise ValueError('Invalid <ImageHere> prompt format.') |
|
|
|
for idx, part in enumerate(parts): |
|
if len(part) > 0: |
|
part_tokens = self.lm_tokenizer(part, return_tensors='pt').to(self.device) |
|
part_embeds = self.lm_model.model.embed_tokens( |
|
part_tokens.input_ids) |
|
wrap_embeds.append(part_embeds) |
|
|
|
temp_len += part_embeds.shape[1] |
|
if idx < image_nums: |
|
wrap_embeds.append(image[idx].unsqueeze(0)) |
|
temp_len += im_len |
|
|
|
if temp_len > self.max_length: |
|
break |
|
|
|
wrap_embeds = torch.cat(wrap_embeds, dim=1) |
|
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device) |
|
|
|
inputs = { |
|
'inputs_embeds': wrap_embeds |
|
} |
|
return inputs |
|
|
|
def mask_user_targets(self, input_ids): |
|
target_batch = [] |
|
for bs in range(input_ids.shape[0]): |
|
ids = input_ids[bs] |
|
targets = copy.deepcopy(ids) |
|
im_round=0 |
|
id_im_start=0 |
|
|
|
for i, temp_id in enumerate(ids): |
|
if temp_id == 151644: |
|
im_round+=1 |
|
if im_round==2: |
|
id_im_start=0 |
|
targets[id_im_start:i + 1] = -100 |
|
id_im_start=i |
|
elif im_round%2==0: |
|
id_im_start=i |
|
elif im_round%2==1: |
|
targets[id_im_start:i + 3] = -100 |
|
|
|
|
|
|
|
|
|
|
|
target_batch.append(targets.unsqueeze(0)) |
|
|
|
target_batch = torch.cat(target_batch, dim=0) |
|
return target_batch |
|
|
|
def interleav_wrap(self, img_list, text_list): |
|
|
|
wrap_embeds_list, wrap_atts_list = [], [] |
|
wrap_target_list = [] |
|
|
|
|
|
for image, text in zip(img_list, text_list): |
|
|
|
img_embeds, atts_img, img_target = self.img2emb(image) |
|
|
|
|
|
text = text[0] |
|
|
|
parts = text.split('<ImageHere>') |
|
|
|
|
|
wrap_tokens, wrap_embeds, wrap_atts = [], [], [] |
|
|
|
|
|
temp_len = 0 |
|
|
|
|
|
image_nums, im_len = img_embeds.shape[:2] |
|
|
|
|
|
for idx, part in enumerate(parts): |
|
|
|
if len(part) > 0: |
|
|
|
part_tokens = self.lm_tokenizer( |
|
part, |
|
return_tensors='pt', |
|
padding='longest').to(self.device) |
|
|
|
|
|
wrap_tokens.append(part_tokens.input_ids) |
|
part_embeds = self.lm_model.model.embed_tokens(part_tokens.input_ids) |
|
wrap_embeds.append(part_embeds) |
|
wrap_atts.append(part_tokens.attention_mask) |
|
|
|
|
|
temp_len += part_embeds.shape[1] |
|
|
|
|
|
if idx < image_nums: |
|
wrap_tokens.append(img_target[idx].unsqueeze(0)) |
|
wrap_embeds.append(img_embeds[idx].unsqueeze(0)) |
|
wrap_atts.append(atts_img[idx].unsqueeze(0)) |
|
|
|
|
|
temp_len += im_len |
|
|
|
|
|
if temp_len > self.max_length: |
|
break |
|
|
|
|
|
wrap_tokens = torch.cat(wrap_tokens, dim=1) |
|
wrap_embeds = torch.cat(wrap_embeds, dim=1) |
|
wrap_atts = torch.cat(wrap_atts, dim=1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
wrap_target = self.mask_user_targets(wrap_tokens).to(self.device) |
|
|
|
|
|
wrap_embeds = wrap_embeds[:, :self.max_length].to(self.device) |
|
wrap_atts = wrap_atts[:, :self.max_length].to(self.device) |
|
wrap_target = wrap_target[:, :self.max_length].to(self.device) |
|
|
|
|
|
|
|
|
|
|
|
wrap_embeds_list.append(wrap_embeds) |
|
wrap_atts_list.append(wrap_atts) |
|
wrap_target_list.append(wrap_target) |
|
|
|
|
|
wrap_embeds = torch.cat(wrap_embeds_list) |
|
wrap_atts = torch.cat(wrap_atts_list) |
|
wrap_target = torch.cat(wrap_target_list) |
|
|
|
|
|
return wrap_embeds, wrap_atts, wrap_target |
|
|
|
def text2emb(self, text, add_special=False): |
|
|
|
to_regress_tokens = self.lm_tokenizer( |
|
text, |
|
return_tensors='pt', |
|
padding='longest').to(self.device) |
|
to_regress_tokens.input_ids |
|
targets = self.mask_user_targets(to_regress_tokens.input_ids) |
|
targets = targets.to(self.device) |
|
|
|
|
|
|
|
return to_regress_tokens, targets |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs |
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
r""" |
|
Args: |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., |
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored |
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. |
|
|
|
Returns: |
|
|
|
```""" |
|
|
|
samples = kwargs.get('samples', None) |
|
if samples: |
|
if samples['data_type'][0] == 'text': |
|
has_img = False |
|
elif samples['data_type'][0] == 'multi': |
|
has_img = True |
|
else: |
|
raise NotImplementedError |
|
|
|
|
|
text = samples['text_input'] |
|
|
|
if has_img: |
|
image = samples['image'] |
|
|
|
to_regress_embeds, attention_mask, targets = self.interleav_wrap( |
|
image, text) |
|
else: |
|
to_regress_tokens, targets = self.text2emb( |
|
text, add_special=True) |
|
to_regress_embeds = self.lm_model.model.embed_tokens( |
|
to_regress_tokens.input_ids) |
|
attention_mask = to_regress_tokens.attention_mask |
|
|
|
inputs_embeds = to_regress_embeds[:, :self.max_length] |
|
attention_mask = attention_mask[:, :self.max_length] |
|
targets = targets[:, :self.max_length] |
|
labels = targets |
|
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
outputs = self.lm_model.model( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
logits = self.lm_model.lm_head(hidden_states) |
|
logits = logits.float() |
|
|
|
loss = None |
|
if labels is not None: |
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
loss_fct = CrossEntropyLoss() |
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
shift_labels = shift_labels.view(-1) |
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[1:] |
|
return (loss,) + output if loss is not None else output |
|
|
|
return CausalLMOutputWithPast( |
|
loss=loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
@torch.no_grad() |
|
def chat( |
|
self, |
|
messages, |
|
images: List[str] = None, |
|
streamer: Optional[BaseStreamer] = None, |
|
max_new_tokens: int = 1024, |
|
do_sample: bool = True, |
|
num_beams: int = 1, |
|
temperature: float = 1.0, |
|
top_p: float = 0.8, |
|
repetition_penalty: float=1.005, |
|
**kwargs, |
|
): |
|
if images!=[]: |
|
print('images ',images) |
|
image_pt=self.get_tensor_image(images) |
|
else: |
|
image_pt=None |
|
inputs=self.interleav_wrap_chat(messages,image_pt) |
|
|
|
inputs = { |
|
k: v.to(self.device) |
|
for k, v in inputs.items() if torch.is_tensor(v) |
|
} |
|
|
|
eos_token_id = [ |
|
self.eos_token_id |
|
] |
|
outputs = self.lm_model.generate( |
|
**inputs, |
|
streamer=streamer, |
|
max_new_tokens=max_new_tokens, |
|
num_beams=num_beams, |
|
do_sample=do_sample, |
|
temperature=temperature, |
|
top_p=top_p, |
|
eos_token_id=eos_token_id, |
|
repetition_penalty=repetition_penalty, |
|
**kwargs, |
|
) |
|
|
|
response = self.lm_tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] |
|
messages+=[{"role": "assistant", "content": response}] |
|
|
|
return response, messages |
|
|
|
|
|
|
|
|
|
|
|
|