AVAIYA commited on
Commit
e228e17
·
1 Parent(s): eaba880

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +148 -0
app.py ADDED
@@ -0,0 +1,148 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pip install GoogleNews
2
+ #pip install --upgrade GoogleNews
3
+
4
+ import streamlit as st
5
+ from GoogleNews import GoogleNews
6
+ from sklearn.feature_extraction.text import TfidfVectorizer
7
+ from sklearn.metrics.pairwise import cosine_similarity
8
+ import pandas as pd
9
+ import numpy as np
10
+ import string
11
+ import re
12
+ from nltk.corpus import stopwords
13
+ from sklearn.metrics.pairwise import cosine_similarity
14
+ import sklearn
15
+ import time
16
+
17
+
18
+ googlenews = GoogleNews()
19
+ googlenews = GoogleNews(lang='ar')
20
+ googlenews.clear()
21
+
22
+
23
+
24
+ st.write("""
25
+ Arabic Fake News Detection System
26
+ A system designed as a part of master project
27
+ done by Reem AlFouzan
28
+ Supervised by : Dr, Abdulla al mutairi
29
+ """)
30
+ #df = pd.read_csv('News.csv')
31
+ text_input = st.text_input (''' **Enter the text** ''')
32
+ if len(text_input) != 0:
33
+ inputt = []
34
+ inputt = pd.DataFrame([text_input])
35
+
36
+ googlenews.search(inputt.iloc[0,0])
37
+ googlenews.get_news(inputt.iloc[0,0])
38
+
39
+ result_0 = googlenews.page_at(1)
40
+ print("Data")
41
+ print(result_0, "data 2")
42
+ # time.sleep(100)
43
+ if len(result_0) == 0:
44
+ desc_1 = ['لا يوجد نتائج للخبر ']
45
+ link_1 = ['لا يوجد مصدر']
46
+ if len(result_0) != 0:
47
+ desc_1 = googlenews.get_texts()
48
+ link_1 = googlenews.get_links()
49
+ for i in list(range(2, 70)):
50
+
51
+ result = googlenews.page_at(i)
52
+ desc = googlenews.get_texts()
53
+ link = googlenews.get_links()
54
+
55
+ desc_1 = desc_1 + desc
56
+ link_1 = link_1 + link
57
+
58
+ column_names = ["text", 'link']
59
+ df = pd.DataFrame(columns = column_names)
60
+
61
+ df['text'] = desc_1
62
+ df['link'] = link_1
63
+
64
+ for letter in '#.][!XR':
65
+ df['text'] = df['text'].astype(str).str.replace(letter,'')
66
+ inputt[0] = inputt[0].astype(str).str.replace(letter,'')
67
+
68
+ arabic_punctuations = '''`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ'''
69
+ english_punctuations = string.punctuation
70
+ punctuations_list = arabic_punctuations + english_punctuations
71
+
72
+ def remove_punctuations(text):
73
+ translator = str.maketrans('', '', punctuations_list)
74
+ return text.translate(translator)
75
+
76
+ def normalize_arabic(text):
77
+ text = re.sub("[إأآا]", "ا", text)
78
+ text = re.sub("ى", "ي", text)
79
+ text = re.sub("ة", "ه", text)
80
+ text = re.sub("گ", "ك", text)
81
+ return text
82
+
83
+
84
+ def remove_repeating_char(text):
85
+ return re.sub(r'(.)\1+', r'\1', text)
86
+
87
+ def processPost(text):
88
+
89
+ #Replace @username with empty string
90
+ text = re.sub('@[^\s]+', ' ', text)
91
+
92
+ #Convert www.* or https?://* to " "
93
+ text = re.sub('((www\.[^\s]+)|(https?://[^\s]+))',' ',text)
94
+
95
+ #Replace #word with word
96
+ text = re.sub(r'#([^\s]+)', r'\1', text)
97
+
98
+ # remove punctuations
99
+ text= remove_punctuations(text)
100
+
101
+ # normalize the text
102
+ text= normalize_arabic(text)
103
+
104
+ # remove repeated letters
105
+ text=remove_repeating_char(text)
106
+
107
+ return text
108
+
109
+
110
+ df['text'] = df['text'].apply(lambda x: processPost(x))
111
+ inputt[0] = inputt[0].apply(lambda x: processPost(x))
112
+
113
+ st.markdown(f"my input is : { inputt.iloc[0,0] }")
114
+ #input=input.apply(lambda x: processPost(x))
115
+
116
+
117
+ vectorizer = TfidfVectorizer()
118
+ vectors = vectorizer.fit_transform(df['text'])
119
+
120
+ text_tfidf = pd.DataFrame(vectors.toarray())
121
+
122
+ traninput = vectorizer.transform(inputt[0])
123
+ traninput = traninput.toarray()
124
+ cosine_sim = cosine_similarity(traninput,text_tfidf)
125
+ top = np.max(cosine_sim)
126
+
127
+
128
+ if top >= .85 :
129
+ prediction = 'الخبر صحيح'
130
+ elif (top < .85) and (top >= .6) :
131
+ prediction = 'الخبر مظلل '
132
+ elif top < .6 :
133
+ prediction = 'الخبر كاذب '
134
+
135
+
136
+ st.markdown(f"most similar news is: { df['text'].iloc[np.argmax(np.array(cosine_sim[0]))] }")
137
+ st.markdown(f"Source url : {df['link'].iloc[np.argmax(np.array(cosine_sim[0]))]}")
138
+ st.markdown(f"Credibility rate : { np.max(cosine_sim)}")
139
+ st.markdown(f"system prediction: { prediction}")
140
+ df.to_csv('Students.csv', sep ='\t')
141
+
142
+
143
+ st.sidebar.markdown('مواقع اخباريه معتمده ')
144
+ st.sidebar.markdown("[العربية](https://www.alarabiya.net/)")
145
+ st.sidebar.markdown("[الجزيرة نت](https://www.aljazeera.net/news/)")
146
+ st.sidebar.markdown("[وكالة الانباء الكويتية](https://www.kuna.net.kw/Default.aspx?language=ar)")
147
+
148
+ #st.markdown('test')