#pip install GoogleNews #pip install --upgrade GoogleNews import streamlit as st from GoogleNews import GoogleNews from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity import pandas as pd import numpy as np import string import re from nltk.corpus import stopwords from sklearn.metrics.pairwise import cosine_similarity import sklearn import time googlenews = GoogleNews() googlenews = GoogleNews(lang='ar') googlenews.clear() st.write(""" Arabic Fake News Detection System A system designed as a part of master project done by Reem AlFouzan Supervised by : Dr, Abdulla al mutairi """) #df = pd.read_csv('News.csv') text_input = st.text_input (''' **Enter the text** ''') if len(text_input) != 0: inputt = [] inputt = pd.DataFrame([text_input]) googlenews.search(inputt.iloc[0,0]) googlenews.get_news(inputt.iloc[0,0]) result_0 = googlenews.page_at(1) print("Data") print(result_0, "data 2") # time.sleep(100) if len(result_0) == 0: desc_1 = ['لا يوجد نتائج للخبر '] link_1 = ['لا يوجد مصدر'] if len(result_0) != 0: desc_1 = googlenews.get_texts() link_1 = googlenews.get_links() for i in list(range(2, 70)): result = googlenews.page_at(i) desc = googlenews.get_texts() link = googlenews.get_links() desc_1 = desc_1 + desc link_1 = link_1 + link column_names = ["text", 'link'] df = pd.DataFrame(columns = column_names) df['text'] = desc_1 df['link'] = link_1 for letter in '#.][!XR': df['text'] = df['text'].astype(str).str.replace(letter,'') inputt[0] = inputt[0].astype(str).str.replace(letter,'') arabic_punctuations = '''`÷×؛<>_()*&^%][ـ،/:"؟.,'{}~¦+|!”…“–ـ''' english_punctuations = string.punctuation punctuations_list = arabic_punctuations + english_punctuations def remove_punctuations(text): translator = str.maketrans('', '', punctuations_list) return text.translate(translator) def normalize_arabic(text): text = re.sub("[إأآا]", "ا", text) text = re.sub("ى", "ي", text) text = re.sub("ة", "ه", text) text = re.sub("گ", "ك", text) return text def remove_repeating_char(text): return re.sub(r'(.)\1+', r'\1', text) def processPost(text): #Replace @username with empty string text = re.sub('@[^\s]+', ' ', text) #Convert www.* or https?://* to " " text = re.sub('((www\.[^\s]+)|(https?://[^\s]+))',' ',text) #Replace #word with word text = re.sub(r'#([^\s]+)', r'\1', text) # remove punctuations text= remove_punctuations(text) # normalize the text text= normalize_arabic(text) # remove repeated letters text=remove_repeating_char(text) return text df['text'] = df['text'].apply(lambda x: processPost(x)) inputt[0] = inputt[0].apply(lambda x: processPost(x)) st.markdown(f"my input is : { inputt.iloc[0,0] }") #input=input.apply(lambda x: processPost(x)) vectorizer = TfidfVectorizer() vectors = vectorizer.fit_transform(df['text']) text_tfidf = pd.DataFrame(vectors.toarray()) traninput = vectorizer.transform(inputt[0]) traninput = traninput.toarray() cosine_sim = cosine_similarity(traninput,text_tfidf) top = np.max(cosine_sim) if top >= .85 : prediction = 'الخبر صحيح' elif (top < .85) and (top >= .6) : prediction = 'الخبر مظلل ' elif top < .6 : prediction = 'الخبر كاذب ' st.markdown(f"most similar news is: { df['text'].iloc[np.argmax(np.array(cosine_sim[0]))] }") st.markdown(f"Source url : {df['link'].iloc[np.argmax(np.array(cosine_sim[0]))]}") st.markdown(f"Credibility rate : { np.max(cosine_sim)}") st.markdown(f"system prediction: { prediction}") df.to_csv('Students.csv', sep ='\t') st.sidebar.markdown('مواقع اخباريه معتمده ') st.sidebar.markdown("[العربية](https://www.alarabiya.net/)") st.sidebar.markdown("[الجزيرة نت](https://www.aljazeera.net/news/)") st.sidebar.markdown("[وكالة الانباء الكويتية](https://www.kuna.net.kw/Default.aspx?language=ar)") #st.markdown('test')