File size: 9,397 Bytes
6726998 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import os
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com"
import numpy as np
import soundfile
import onnxruntime as ort
import axengine as axe
import argparse
import time
from split_utils import split_sentence
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from symbols import LANG_TO_SYMBOL_MAP
import re
def intersperse(lst, item):
result = [item] * (len(lst) * 2 + 1)
result[1::2] = lst
return result
def get_text_for_tts_infer(text, language_str, symbol_to_id=None):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id)
phone = intersperse(phone, 0)
tone = intersperse(tone, 0)
language = intersperse(language, 0)
phone = np.array(phone, dtype=np.int32)
tone = np.array(tone, dtype=np.int32)
language = np.array(language, dtype=np.int32)
word2ph = np.array(word2ph, dtype=np.int32) * 2
word2ph[0] += 1
return phone, tone, language, norm_text, word2ph
def split_sentences_into_pieces(text, language, quiet=False):
texts = split_sentence(text, language_str=language)
if not quiet:
print(" > Text split to sentences.")
print('\n'.join(texts))
print(" > ===========================")
return texts
def get_args():
parser = argparse.ArgumentParser(
prog="melotts",
description="Run TTS on input sentence"
)
parser.add_argument("--sentence", "-s", type=str, required=False, default="爱芯元智半导体股份有限公司,致力于打造世界领先的人工智能感知与边缘计算芯片。服务智慧城市、智能驾驶、机器人的海量普惠的应用")
parser.add_argument("--wav", "-w", type=str, required=False, default="output.wav")
parser.add_argument("--encoder", "-e", type=str, required=False, default=None)
parser.add_argument("--decoder", "-d", type=str, required=False, default=None)
parser.add_argument("--dec_len", type=int, default=128)
parser.add_argument("--sample_rate", "-sr", type=int, required=False, default=44100)
parser.add_argument("--speed", type=float, required=False, default=0.8)
parser.add_argument("--language", "-l", type=str,
choices=["ZH", "ZH_MIX_EN", "JP", "EN", 'KR', "ES", "SP","FR"], required=False, default="ZH_MIX_EN")
return parser.parse_args()
def audio_numpy_concat(segment_data_list, sr, speed=1.):
audio_segments = []
for segment_data in segment_data_list:
audio_segments += segment_data.reshape(-1).tolist()
audio_segments += [0] * int((sr * 0.05) / speed)
audio_segments = np.array(audio_segments).astype(np.float32)
return audio_segments
def merge_sub_audio(sub_audio_list, pad_size, audio_len):
# Average pad part
if pad_size > 0:
for i in range(len(sub_audio_list) - 1):
sub_audio_list[i][-pad_size:] += sub_audio_list[i+1][:pad_size]
sub_audio_list[i][-pad_size:] /= 2
if i > 0:
sub_audio_list[i] = sub_audio_list[i][pad_size:]
sub_audio = np.concatenate(sub_audio_list, axis=-1)
return sub_audio[:audio_len]
# 计算每个词的发音时长
def calc_word2pronoun(word2ph, pronoun_lens):
indice = [0]
for ph in word2ph[:-1]:
indice.append(indice[-1] + ph)
word2pronoun = []
for i, ph in zip(indice, word2ph):
word2pronoun.append(np.sum(pronoun_lens[i : i + ph]))
return word2pronoun
# 生成有overlap的slice,slice索引是对于zp的
def generate_slices(word2pronoun, dec_len):
pn_start, pn_end = 0, 0
zp_start, zp_end = 0, 0
zp_len = 0
pn_slices = []
zp_slices = []
while pn_end < len(word2pronoun):
# 前一个slice长度大于2 且 加上现在这个字没有超过dec_len,则往前overlap两个字
if pn_end - pn_start > 2 and np.sum(word2pronoun[pn_end - 2 : pn_end + 1]) <= dec_len:
zp_len = np.sum(word2pronoun[pn_end - 2 : pn_end])
zp_start = zp_end - zp_len
pn_start = pn_end - 2
else:
zp_len = 0
zp_start = zp_end
pn_start = pn_end
while pn_end < len(word2pronoun) and zp_len + word2pronoun[pn_end] <= dec_len:
zp_len += word2pronoun[pn_end]
pn_end += 1
zp_end = zp_start + zp_len
pn_slices.append(slice(pn_start, pn_end))
zp_slices.append(slice(zp_start, zp_end))
return pn_slices, zp_slices
def main():
args = get_args()
sentence = args.sentence
sample_rate = args.sample_rate
enc_model = args.encoder # default="../models/encoder.onnx"
dec_model = args.decoder # default="../models/decoder.axmodel"
language = args.language # default: ZH_MIX_EN
dec_len = args.dec_len # default: 128
if language == "ZH":
language = "ZH_MIX_EN"
if enc_model is None:
if "ZH" in language:
enc_model = "../models/encoder-zh.onnx"
else:
enc_model = f"../models/encoder-{language.lower()}.onnx"
assert os.path.exists(enc_model), f"Encoder model ({enc_model}) not exist!"
if dec_model is None:
if "ZH" in language:
dec_model = "../models/decoder-zh.axmodel"
else:
dec_model = f"../models/decoder-{language.lower()}.axmodel"
assert os.path.exists(dec_model), f"Decoder model ({dec_model}) not exist!"
print(f"sentence: {sentence}")
print(f"sample_rate: {sample_rate}")
print(f"encoder: {enc_model}")
print(f"decoder: {dec_model}")
print(f"language: {language}")
_symbol_to_id = {s: i for i, s in enumerate(LANG_TO_SYMBOL_MAP[language])}
# Split sentence
start = time.time()
sens = split_sentences_into_pieces(sentence, language, quiet=False)
print(f"split_sentences_into_pieces take {1000 * (time.time() - start)}ms")
# Load models
start = time.time()
sess_enc = ort.InferenceSession(enc_model, providers=["CPUExecutionProvider"], sess_options=ort.SessionOptions())
sess_dec = axe.InferenceSession(dec_model)
print(f"load models take {1000 * (time.time() - start)}ms")
# Load static input
g = np.fromfile(f"../g-{language.lower()}.bin", dtype=np.float32).reshape(1, 256, 1)
# Final wav
audio_list = []
# Iterate over splitted sentences
for n, se in enumerate(sens):
if language in ['EN', 'ZH_MIX_EN']:
se = re.sub(r'([a-z])([A-Z])', r'\1 \2', se)
print(f"\nSentence[{n}]: {se}")
# Convert sentence to phones and tones
phones, tones, lang_ids, norm_text, word2ph = get_text_for_tts_infer(se, language, symbol_to_id=_symbol_to_id)
start = time.time()
# Run encoder
z_p, pronoun_lens, audio_len = sess_enc.run(None, input_feed={
'phone': phones, 'g': g,
'tone': tones, 'language': lang_ids,
'noise_scale': np.array([0], dtype=np.float32),
'length_scale': np.array([1.0 / args.speed], dtype=np.float32),
'noise_scale_w': np.array([0], dtype=np.float32),
'sdp_ratio': np.array([0], dtype=np.float32)})
print(f"encoder run take {1000 * (time.time() - start):.2f}ms")
# 计算每个词的发音长度
word2pronoun = calc_word2pronoun(word2ph, pronoun_lens)
# 生成word2pronoun和zp的切片
pn_slices, zp_slices = generate_slices(word2pronoun, dec_len)
audio_len = audio_len[0]
sub_audio_list = []
for i, (ps, zs) in enumerate(zip(pn_slices, zp_slices)):
zp_slice = z_p[..., zs]
# Padding前zp的长度
sub_dec_len = zp_slice.shape[-1]
# Padding前输出音频的长度
sub_audio_len = 512 * sub_dec_len
# Padding到dec_len
if zp_slice.shape[-1] < dec_len:
zp_slice = np.concatenate((zp_slice, np.zeros((*zp_slice.shape[:-1], dec_len - zp_slice.shape[-1]), dtype=np.float32)), axis=-1)
start = time.time()
audio = sess_dec.run(None, input_feed={"z_p": zp_slice,
"g": g
})[0].flatten()
# 处理overlap
audio_start = 0
if len(sub_audio_list) > 0:
if pn_slices[i - 1].stop > ps.start:
# 去掉第一个字
audio_start = 512 * word2pronoun[ps.start]
audio_end = sub_audio_len
if i < len(pn_slices) - 1:
if ps.stop > pn_slices[i + 1].start:
# 去掉最后一个字
audio_end = sub_audio_len - 512 * word2pronoun[ps.stop - 1]
audio = audio[audio_start:audio_end]
print(f"Decode slice[{i}]: decoder run take {1000 * (time.time() - start):.2f}ms")
sub_audio_list.append(audio)
sub_audio = merge_sub_audio(sub_audio_list, 0, audio_len)
audio_list.append(sub_audio)
audio = audio_numpy_concat(audio_list, sr=sample_rate, speed=args.speed)
soundfile.write(args.wav, audio, sample_rate)
print(f"Save to {args.wav}")
if __name__ == "__main__":
main()
|