|
import os |
|
os.environ["HF_ENDPOINT"] = "https://hf-mirror.com" |
|
|
|
import numpy as np |
|
import soundfile |
|
import onnxruntime as ort |
|
import argparse |
|
import time |
|
from split_utils import split_sentence |
|
from text import cleaned_text_to_sequence |
|
from text.cleaner import clean_text |
|
from symbols import LANG_TO_SYMBOL_MAP |
|
import re |
|
|
|
|
|
def intersperse(lst, item): |
|
result = [item] * (len(lst) * 2 + 1) |
|
result[1::2] = lst |
|
return result |
|
|
|
def get_text_for_tts_infer(text, language_str, symbol_to_id=None): |
|
norm_text, phone, tone, word2ph = clean_text(text, language_str) |
|
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str, symbol_to_id) |
|
|
|
phone = intersperse(phone, 0) |
|
tone = intersperse(tone, 0) |
|
language = intersperse(language, 0) |
|
|
|
phone = np.array(phone, dtype=np.int32) |
|
tone = np.array(tone, dtype=np.int32) |
|
language = np.array(language, dtype=np.int32) |
|
word2ph = np.array(word2ph, dtype=np.int32) * 2 |
|
word2ph[0] += 1 |
|
|
|
return phone, tone, language, norm_text, word2ph |
|
|
|
def split_sentences_into_pieces(text, language, quiet=False): |
|
texts = split_sentence(text, language_str=language) |
|
if not quiet: |
|
print(" > Text split to sentences.") |
|
print('\n'.join(texts)) |
|
print(" > ===========================") |
|
return texts |
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser( |
|
prog="melotts", |
|
description="Run TTS on input sentence" |
|
) |
|
parser.add_argument("--sentence", "-s", type=str, required=False, default="爱芯元智半导体股份有限公司,致力于打造世界领先的人工智能感知与边缘计算芯片。服务智慧城市、智能驾驶、机器人的海量普惠的应用") |
|
parser.add_argument("--wav", "-w", type=str, required=False, default="output.wav") |
|
parser.add_argument("--encoder", "-e", type=str, required=False, default=None) |
|
parser.add_argument("--decoder", "-d", type=str, required=False, default=None) |
|
parser.add_argument("--dec_len", type=int, default=128) |
|
parser.add_argument("--sample_rate", "-sr", type=int, required=False, default=44100) |
|
parser.add_argument("--speed", type=float, required=False, default=0.8) |
|
parser.add_argument("--language", "-l", type=str, |
|
choices=["ZH", "ZH_MIX_EN", "JP", "EN", 'KR', "ES", "SP","FR"], required=False, default="ZH_MIX_EN") |
|
return parser.parse_args() |
|
|
|
|
|
def audio_numpy_concat(segment_data_list, sr, speed=1.): |
|
audio_segments = [] |
|
for segment_data in segment_data_list: |
|
audio_segments += segment_data.reshape(-1).tolist() |
|
audio_segments += [0] * int((sr * 0.05) / speed) |
|
audio_segments = np.array(audio_segments).astype(np.float32) |
|
return audio_segments |
|
|
|
|
|
def merge_sub_audio(sub_audio_list, pad_size, audio_len): |
|
|
|
if pad_size > 0: |
|
for i in range(len(sub_audio_list) - 1): |
|
sub_audio_list[i][-pad_size:] += sub_audio_list[i+1][:pad_size] |
|
sub_audio_list[i][-pad_size:] /= 2 |
|
if i > 0: |
|
sub_audio_list[i] = sub_audio_list[i][pad_size:] |
|
|
|
sub_audio = np.concatenate(sub_audio_list, axis=-1) |
|
return sub_audio[:audio_len] |
|
|
|
|
|
def calc_word2pronoun(word2ph, pronoun_lens): |
|
indice = [0] |
|
for ph in word2ph[:-1]: |
|
indice.append(indice[-1] + ph) |
|
word2pronoun = [] |
|
for i, ph in zip(indice, word2ph): |
|
word2pronoun.append(np.sum(pronoun_lens[i : i + ph])) |
|
return word2pronoun |
|
|
|
|
|
def generate_slices(word2pronoun, dec_len): |
|
pn_start, pn_end = 0, 0 |
|
zp_start, zp_end = 0, 0 |
|
zp_len = 0 |
|
pn_slices = [] |
|
zp_slices = [] |
|
while pn_end < len(word2pronoun): |
|
|
|
if pn_end - pn_start > 2 and np.sum(word2pronoun[pn_end - 2 : pn_end + 1]) <= dec_len: |
|
zp_len = np.sum(word2pronoun[pn_end - 2 : pn_end]) |
|
zp_start = zp_end - zp_len |
|
pn_start = pn_end - 2 |
|
else: |
|
zp_len = 0 |
|
zp_start = zp_end |
|
pn_start = pn_end |
|
|
|
while pn_end < len(word2pronoun) and zp_len + word2pronoun[pn_end] <= dec_len: |
|
zp_len += word2pronoun[pn_end] |
|
pn_end += 1 |
|
zp_end = zp_start + zp_len |
|
pn_slices.append(slice(pn_start, pn_end)) |
|
zp_slices.append(slice(zp_start, zp_end)) |
|
return pn_slices, zp_slices |
|
|
|
def main(): |
|
args = get_args() |
|
sentence = args.sentence |
|
sample_rate = args.sample_rate |
|
enc_model = args.encoder |
|
dec_model = args.decoder |
|
language = args.language |
|
dec_len = args.dec_len |
|
|
|
if language == "ZH": |
|
language = "ZH_MIX_EN" |
|
|
|
if enc_model is None: |
|
if "ZH" in language: |
|
enc_model = "../models/encoder-zh.onnx" |
|
else: |
|
enc_model = f"../models/encoder-{language.lower()}.onnx" |
|
assert os.path.exists(enc_model), f"Encoder model ({enc_model}) not exist!" |
|
if dec_model is None: |
|
if "ZH" in language: |
|
dec_model = "../models/decoder-zh.onnx" |
|
else: |
|
dec_model = f"../models/decoder-{language.lower()}.onnx" |
|
assert os.path.exists(dec_model), f"Decoder model ({dec_model}) not exist!" |
|
|
|
print(f"sentence: {sentence}") |
|
print(f"sample_rate: {sample_rate}") |
|
print(f"encoder: {enc_model}") |
|
print(f"decoder: {dec_model}") |
|
print(f"language: {language}") |
|
|
|
_symbol_to_id = {s: i for i, s in enumerate(LANG_TO_SYMBOL_MAP[language])} |
|
|
|
|
|
start = time.time() |
|
sens = split_sentences_into_pieces(sentence, language, quiet=False) |
|
print(f"split_sentences_into_pieces take {1000 * (time.time() - start)}ms") |
|
|
|
|
|
start = time.time() |
|
sess_enc = ort.InferenceSession(enc_model, providers=["CPUExecutionProvider"], sess_options=ort.SessionOptions()) |
|
sess_dec = ort.InferenceSession(dec_model, providers=["CPUExecutionProvider"], sess_options=ort.SessionOptions()) |
|
|
|
print(f"load models take {1000 * (time.time() - start)}ms") |
|
|
|
|
|
g = np.fromfile(f"../models/g-{language.lower()}.bin", dtype=np.float32).reshape(1, 256, 1) |
|
|
|
|
|
audio_list = [] |
|
|
|
|
|
for n, se in enumerate(sens): |
|
if language in ['EN', 'ZH_MIX_EN']: |
|
se = re.sub(r'([a-z])([A-Z])', r'\1 \2', se) |
|
print(f"\nSentence[{n}]: {se}") |
|
|
|
phones, tones, lang_ids, norm_text, word2ph = get_text_for_tts_infer(se, language, symbol_to_id=_symbol_to_id) |
|
start = time.time() |
|
|
|
z_p, pronoun_lens, audio_len = sess_enc.run(None, input_feed={ |
|
'phone': phones, 'g': g, |
|
'tone': tones, 'language': lang_ids, |
|
'noise_scale': np.array([0], dtype=np.float32), |
|
'length_scale': np.array([1.0 / args.speed], dtype=np.float32), |
|
'noise_scale_w': np.array([0], dtype=np.float32), |
|
'sdp_ratio': np.array([0], dtype=np.float32)}) |
|
print(f"encoder run take {1000 * (time.time() - start):.2f}ms") |
|
|
|
word2pronoun = calc_word2pronoun(word2ph, pronoun_lens) |
|
|
|
pn_slices, zp_slices = generate_slices(word2pronoun, dec_len) |
|
|
|
audio_len = audio_len[0] |
|
sub_audio_list = [] |
|
for i, (ps, zs) in enumerate(zip(pn_slices, zp_slices)): |
|
zp_slice = z_p[..., zs] |
|
|
|
|
|
sub_dec_len = zp_slice.shape[-1] |
|
|
|
sub_audio_len = 512 * sub_dec_len |
|
|
|
|
|
if zp_slice.shape[-1] < dec_len: |
|
zp_slice = np.concatenate((zp_slice, np.zeros((*zp_slice.shape[:-1], dec_len - zp_slice.shape[-1]), dtype=np.float32)), axis=-1) |
|
|
|
start = time.time() |
|
audio = sess_dec.run(None, input_feed={"z_p": zp_slice, |
|
"g": g |
|
})[0].flatten() |
|
|
|
|
|
audio_start = 0 |
|
if len(sub_audio_list) > 0: |
|
if pn_slices[i - 1].stop > ps.start: |
|
|
|
audio_start = 512 * word2pronoun[ps.start] |
|
|
|
audio_end = sub_audio_len |
|
if i < len(pn_slices) - 1: |
|
if ps.stop > pn_slices[i + 1].start: |
|
|
|
audio_end = sub_audio_len - 512 * word2pronoun[ps.stop - 1] |
|
|
|
audio = audio[audio_start:audio_end] |
|
print(f"Decode slice[{i}]: decoder run take {1000 * (time.time() - start):.2f}ms") |
|
sub_audio_list.append(audio) |
|
sub_audio = merge_sub_audio(sub_audio_list, 0, audio_len) |
|
audio_list.append(sub_audio) |
|
audio = audio_numpy_concat(audio_list, sr=sample_rate, speed=args.speed) |
|
soundfile.write(args.wav, audio, sample_rate) |
|
print(f"Save to {args.wav}") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|