import time from . import cleaned_text_to_sequence import copy # language_module_map = {"ZH": chinese, # 'ZH_MIX_EN': chinese_mix, # "EN": english, # "JP": japanese} # 'KR': korean, # 'FR': french, # 'SP': spanish, # 'ES': spanish, # } # def clean_text(text, language): # language_module = language_module_map[language] # norm_text = language_module.text_normalize(text) # phones, tones, word2ph = language_module.g2p(norm_text) # return norm_text, phones, tones, word2ph def clean_text(text, language): start = time.time() if language == "ZH": from . import chinese as language_module elif language == "ZH_MIX_EN": from . import chinese_mix as language_module elif language == "EN": from . import english as language_module elif language == "JP": from . import japanese as language_module elif language == "KR": from . import korean as language_module elif language == "FR": from . import french as language_module elif language == "SP" or language == "ES": from . import spanish as language_module else: assert False, f"Unsupported lanuguage: {language}" print(f"Load language module take {1000 * (time.time() - start)}ms") norm_text = language_module.text_normalize(text) phones, tones, word2ph = language_module.g2p(norm_text) return norm_text, phones, tones, word2ph # def clean_text_bert(text, language, device=None): # language_module = language_module_map[language] # norm_text = language_module.text_normalize(text) # phones, tones, word2ph = language_module.g2p(norm_text) # word2ph_bak = copy.deepcopy(word2ph) # for i in range(len(word2ph)): # word2ph[i] = word2ph[i] * 2 # word2ph[0] += 1 # bert = language_module.get_bert_feature(norm_text, word2ph, device=device) # return norm_text, phones, tones, word2ph_bak, bert def text_to_sequence(text, language): norm_text, phones, tones, word2ph = clean_text(text, language) return cleaned_text_to_sequence(phones, tones, language) if __name__ == "__main__": pass