File size: 14,347 Bytes
4494462 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import argparse
import os
import re
import sys
import time
import cv2
import math
import glob
import numpy as np
import axengine as axe
from axengine import axclrt_provider_name, axengine_provider_name
def load_model(model_path: str | os.PathLike, selected_provider: str, selected_device_id: int = 0):
if selected_provider == 'AUTO':
# Use AUTO to let the pyengine choose the first available provider
return axe.InferenceSession(model_path)
providers = []
if selected_provider == axclrt_provider_name:
provider_options = {"device_id": selected_device_id}
providers.append((axclrt_provider_name, provider_options))
if selected_provider == axengine_provider_name:
providers.append(axengine_provider_name)
return axe.InferenceSession(model_path, providers=providers)
def get_frames(video_name):
"""获取视频帧
Args:
video_name (_type_): _description_
Yields:
_type_: _description_
"""
if not video_name:
rtsp = "rtsp://%s:%s@%s:554/cam/realmonitor?channel=1&subtype=1" % ("admin", "123456", "192.168.1.108")
cap = cv2.VideoCapture(rtsp) if rtsp else cv2.VideoCapture()
# warmup
for i in range(5):
cap.read()
while True:
ret, frame = cap.read()
if ret:
# print('读取成功===>>>', frame.shape)
yield cv2.resize(frame,(800, 600))
else:
break
elif video_name.endswith('avi') or \
video_name.endswith('mp4'):
cap = cv2.VideoCapture(video_name)
while True:
ret, frame = cap.read()
if ret:
yield frame
else:
break
else:
images = sorted(glob(os.path.join(video_name, 'img', '*.jp*')))
for img in images:
frame = cv2.imread(img)
yield frame
class Preprocessor_wo_mask(object):
def __init__(self):
self.mean = np.array([0.485, 0.456, 0.406]).reshape((1, 3, 1, 1)).astype(np.float32)
self.std = np.array([0.229, 0.224, 0.225]).reshape((1, 3, 1, 1)).astype(np.float32)
def process(self, img_arr: np.ndarray):
# Deal with the image patch
img_tensor = img_arr.transpose((2, 0, 1)).reshape((1, 3, img_arr.shape[0], img_arr.shape[1])).astype(np.float32) / 255.0
img_tensor_norm = (img_tensor - self.mean) / self.std # (1,3,H,W)
return img_tensor_norm
class MFTrackerORT:
def __init__(self, model_path, fp16=False) -> None:
self.debug = True
self.gpu_id = 0
self.providers = ["CUDAExecutionProvider"]
self.provider_options = [{"device_id": str(self.gpu_id)}]
self.model_path = model_path
self.fp16 = fp16
self.init_track_net()
self.preprocessor = Preprocessor_wo_mask()
self.max_score_decay = 1.0
self.search_factor = 4.5
self.search_size = 224
self.template_factor = 2.0
self.template_size = 112
self.update_interval = 200
self.online_size = 1
def init_track_net(self):
"""使用设置的参数初始化tracker网络
"""
self.ax_session = load_model(self.model_path, selected_provider="AUTO")
def track_init(self, frame, target_pos=None, target_sz = None):
"""使用第一帧进行初始化
Args:
frame (_type_): _description_
target_pos (_type_, optional): _description_. Defaults to None.
target_sz (_type_, optional): _description_. Defaults to None.
"""
self.trace_list = []
try:
# [x, y, w, h]
init_state = [target_pos[0], target_pos[1], target_sz[0], target_sz[1]]
z_patch_arr, _, z_amask_arr = self.sample_target(frame, init_state, self.template_factor, output_sz=self.template_size)
template = self.preprocessor.process(z_patch_arr)
self.template = template
self.online_template = template
self.online_state = init_state
self.online_image = frame
self.max_pred_score = -1.0
self.online_max_template = template
self.online_forget_id = 0
# save states
self.state = init_state
self.frame_id = 0
print(f"第一帧初始化完毕!")
except:
print(f"第一帧初始化异常!")
exit()
def track(self, image, info: dict = None):
H, W, _ = image.shape
self.frame_id += 1
x_patch_arr, resize_factor, x_amask_arr = self.sample_target(image, self.state, self.search_factor,
output_sz=self.search_size) # (x1, y1, w, h)
search = self.preprocessor.process(x_patch_arr)
# compute ONNX Runtime output prediction
ort_inputs = {'img_t': self.template, 'img_ot': self.online_template, 'img_search': search}
ort_outs = self.ax_session.run(None, ort_inputs)
# print(f">>> lenght trt_outputs: {ort_outs}")
pred_boxes = ort_outs[0]
pred_score = ort_outs[1]
# print(f">>> box and score: {pred_boxes} {pred_score}")
# Baseline: Take the mean of all pred boxes as the final result
pred_box = (np.mean(pred_boxes, axis=0) * self.search_size / resize_factor).tolist() # (cx, cy, w, h) [0,1]
# get the final box result
self.state = self.clip_box(self.map_box_back(pred_box, resize_factor), H, W, margin=10)
self.max_pred_score = self.max_pred_score * self.max_score_decay
# update template
if pred_score > 0.5 and pred_score > self.max_pred_score:
z_patch_arr, _, z_amask_arr = self.sample_target(image, self.state,
self.template_factor,
output_sz=self.template_size) # (x1, y1, w, h)
self.online_max_template = self.preprocessor.process(z_patch_arr)
self.max_pred_score = pred_score
if self.frame_id % self.update_interval == 0:
if self.online_size == 1:
self.online_template = self.online_max_template
else:
self.online_template[self.online_forget_id:self.online_forget_id+1] = self.online_max_template
self.online_forget_id = (self.online_forget_id + 1) % self.online_size
self.max_pred_score = -1
self.online_max_template = self.template
# for debug
if self.debug:
x1, y1, w, h = self.state
# image_BGR = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
cv2.rectangle(image, (int(x1),int(y1)), (int(x1+w),int(y1+h)), color=(0,0,255), thickness=2)
return {"target_bbox": self.state, "conf_score": pred_score}
def map_box_back(self, pred_box: list, resize_factor: float):
cx_prev, cy_prev = self.state[0] + 0.5 * self.state[2], self.state[1] + 0.5 * self.state[3]
cx, cy, w, h = pred_box
half_side = 0.5 * self.search_size / resize_factor
cx_real = cx + (cx_prev - half_side)
cy_real = cy + (cy_prev - half_side)
return [cx_real - 0.5 * w, cy_real - 0.5 * h, w, h]
def map_box_back_batch(self, pred_box: np.ndarray, resize_factor: float):
cx_prev, cy_prev = self.state[0] + 0.5 * self.state[2], self.state[1] + 0.5 * self.state[3]
cx, cy, w, h = pred_box.T # (N,4) --> (N,)
half_side = 0.5 * self.search_size / resize_factor
cx_real = cx + (cx_prev - half_side)
cy_real = cy + (cy_prev - half_side)
return np.stack([cx_real - 0.5 * w, cy_real - 0.5 * h, w, h], axis=-1)
def sample_target(self, im, target_bb, search_area_factor, output_sz=None, mask=None):
""" Extracts a square crop centered at target_bb box, of area search_area_factor^2 times target_bb area
args:
im - cv image
target_bb - target box [x, y, w, h]
search_area_factor - Ratio of crop size to target size
output_sz - (float) Size to which the extracted crop is resized (always square). If None, no resizing is done.
returns:
cv image - extracted crop
float - the factor by which the crop has been resized to make the crop size equal output_size
"""
if not isinstance(target_bb, list):
x, y, w, h = target_bb.tolist()
else:
x, y, w, h = target_bb
# Crop image
crop_sz = math.ceil(math.sqrt(w * h) * search_area_factor)
if crop_sz < 1:
raise Exception('Too small bounding box.')
x1 = int(round(x + 0.5 * w - crop_sz * 0.5))
x2 = int(x1 + crop_sz)
y1 = int(round(y + 0.5 * h - crop_sz * 0.5))
y2 = int(y1 + crop_sz)
x1_pad = int(max(0, -x1))
x2_pad = int(max(x2 - im.shape[1] + 1, 0))
y1_pad = int(max(0, -y1))
y2_pad = int(max(y2 - im.shape[0] + 1, 0))
# Crop target
im_crop = im[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad, :]
if mask is not None:
mask_crop = mask[y1 + y1_pad:y2 - y2_pad, x1 + x1_pad:x2 - x2_pad]
# Pad
im_crop_padded = cv2.copyMakeBorder(im_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv2.BORDER_CONSTANT)
# deal with attention mask
H, W, _ = im_crop_padded.shape
att_mask = np.ones((H,W))
end_x, end_y = -x2_pad, -y2_pad
if y2_pad == 0:
end_y = None
if x2_pad == 0:
end_x = None
att_mask[y1_pad:end_y, x1_pad:end_x] = 0
if mask is not None:
mask_crop_padded = cv2.copyMakeBorder(mask_crop, y1_pad, y2_pad, x1_pad, x2_pad, cv2.BORDER_CONSTANT)
if output_sz is not None:
resize_factor = output_sz / crop_sz
im_crop_padded = cv2.resize(im_crop_padded, (output_sz, output_sz))
att_mask = cv2.resize(att_mask, (output_sz, output_sz)).astype(np.bool_)
if mask is None:
return im_crop_padded, resize_factor, att_mask
mask_crop_padded = \
mask_crop_padded = cv2.resize(mask_crop_padded, (output_sz, output_sz))
return im_crop_padded, resize_factor, att_mask, mask_crop_padded
else:
if mask is None:
return im_crop_padded, att_mask.astype(np.bool_), 1.0
return im_crop_padded, 1.0, att_mask.astype(np.bool_), mask_crop_padded
def clip_box(self, box: list, H, W, margin=0):
x1, y1, w, h = box
x2, y2 = x1 + w, y1 + h
x1 = min(max(0, x1), W-margin)
x2 = min(max(margin, x2), W)
y1 = min(max(0, y1), H-margin)
y2 = min(max(margin, y2), H)
w = max(margin, x2-x1)
h = max(margin, y2-y1)
return [x1, y1, w, h]
def main(model_path, frame_path, repeat, selected_provider, selected_device_id):
Tracker = MFTrackerORT(model_path = model_path, fp16=False)
first_frame = True
Tracker.video_name = frame_path
frame_id = 0
total_time = 0
for frame in get_frames(Tracker.video_name):
# print(f"frame shape {frame.shape}")
# 如果超过了指定的帧数限制,则跳出循环
if repeat is not None and frame_id >= repeat:
print(f"Reached the maximum number of frames ({repeat}). Exiting loop.")
break
tic = cv2.getTickCount()
if first_frame:
# x, y, w, h = cv2.selectROI(video_name, frame, fromCenter=False)
x, y, w, h = 1079, 482, 99, 106
target_pos = [x, y]
target_sz = [w, h]
print('====================type=================', target_pos, type(target_pos), type(target_sz))
Tracker.track_init(frame, target_pos, target_sz)
first_frame = False
else:
state = Tracker.track(frame)
frame_id += 1
os.makedirs('axmodel_output', exist_ok=True)
cv2.imwrite(f'axmodel_output/{str(frame_id)}.png', frame)
toc = cv2.getTickCount() - tic
toc = int(1 / (toc / cv2.getTickFrequency()))
total_time += toc
print('Video: {:12s} {:3.1f}fps'.format('tracking', toc))
print('video: average {:12s} {:3.1f} fps'.format('finale average tracking fps', total_time/(frame_id - 1)))
class ExampleParser(argparse.ArgumentParser):
def error(self, message):
self.print_usage(sys.stderr)
print(f"\nError: {message}")
print("\nExample usage:")
print(" python3 run_mixformer2_axmodel.py -m <model_file> -f <frame_file>")
print(" python3 run_mixformer2_axmodel.py -m compiled.axmodel -f car.avi")
print(
f" python3 run_mixformer2_axmodel.py -m compiled.axmodel -f car.avi -p {axengine_provider_name}")
print(
f" python3 run_mixformer2_axmodel.py -m compiled.axmodel -f car.avi -p {axclrt_provider_name}")
sys.exit(1)
if __name__ == "__main__":
ap = ExampleParser()
ap.add_argument('-m', '--model-path', type=str, help='model path', required=True)
ap.add_argument('-f', '--frame-path', type=str, help='frame path', required=True)
ap.add_argument('-r', '--repeat', type=int, help='repeat times', default=100)
ap.add_argument(
'-p',
'--provider',
type=str,
choices=["AUTO", f"{axclrt_provider_name}", f"{axengine_provider_name}"],
help=f'"AUTO", "{axclrt_provider_name}", "{axengine_provider_name}"',
default='AUTO'
)
ap.add_argument(
'-d',
'--device-id',
type=int,
help=R'axclrt device index, depends on how many cards inserted',
default=0
)
args = ap.parse_args()
model_file = args.model_path
frame_file = args.frame_path
# check if the model and image exist
assert os.path.exists(model_file), f"model file path {model_file} does not exist"
assert os.path.exists(frame_file), f"image file path {frame_file} does not exist"
repeat = args.repeat
provider = args.provider
device_id = args.device_id
main(model_file, frame_file, repeat, provider, device_id)
|