SenseVoice / SenseVoiceAx.py
inoryQwQ's picture
update codes
1dd0b5c
import axengine as axe
import numpy as np
import librosa
from frontend import WavFrontend
import os
import time
from typing import Any, Dict, Iterable, List, NamedTuple, Set, Tuple, Union
from print_utils import rich_transcription_postprocess
def sequence_mask(lengths, maxlen=None, dtype=np.float32):
# 如果 maxlen 未指定,则取 lengths 中的最大值
if maxlen is None:
maxlen = np.max(lengths)
# 创建一个从 0 到 maxlen-1 的行向量
row_vector = np.arange(0, maxlen, 1)
# 将 lengths 转换为列向量
matrix = np.expand_dims(lengths, axis=-1)
# 比较生成掩码
mask = row_vector < matrix
if mask.shape[-1] < lengths[0]:
mask = np.concatenate([mask, np.zeros((mask.shape[0], lengths[0] - mask.shape[-1]), dtype=np.float32)], axis=-1)
# 返回指定数据类型的掩码
return mask.astype(dtype)[None, ...]
def unique_consecutive_np(x, dim=None, return_inverse=False, return_counts=False):
if dim is None:
# 默认情况,展平后去重
x_flat = x.ravel()
mask = np.concatenate(([True], x_flat[1:] != x_flat[:-1]))
unique_data = x_flat[mask]
else:
# 沿着指定维度去重
axis = dim if dim >= 0 else x.ndim + dim
if axis >= x.ndim:
raise ValueError(f"dim {dim} is out of range for array of dimension {x.ndim}")
# 使用 np.diff 检查相邻元素是否相同
mask = np.ones(x.shape[axis], dtype=bool)
if x.shape[axis] > 1:
# 比较当前元素和前一个元素是否不同
diff = np.diff(x, axis=axis)
mask[1:] = np.any(diff != 0, axis=tuple(range(diff.ndim))[axis:])
# 使用 mask 索引提取唯一元素
unique_data = np.take(x, np.where(mask)[0], axis=axis)
# 处理 return_inverse 和 return_counts
results = (unique_data,)
if return_inverse:
if dim is None:
inv_idx = np.cumsum(mask) - 1
else:
inv_idx = np.cumsum(mask) - 1
# 需要调整形状以匹配输入
inv_idx = np.expand_dims(inv_idx, axis=axis)
inv_idx = np.broadcast_to(inv_idx, x.shape)
results += (inv_idx,)
if return_counts:
if dim is None:
counts = np.diff(np.where(np.concatenate((mask, [True])))[0])
else:
counts = np.diff(np.where(np.concatenate((mask, [True])))[0])
results += (counts,)
return results[0] if len(results) == 1 else results
def longest_common_suffix_prefix_with_tolerance(
lhs,
rhs,
tolerate: int = 0
) -> int:
"""
计算两个数组的最长公共子序列,该子序列必须同时满足:
- 是 lhs 的后 n 个元素(后缀)
- 是 rhs 的前 n 个元素(前缀)
并且允许最多 `tolerate` 个元素不匹配。
参数:
lhs: np.ndarray, 第一个数组
rhs: np.ndarray, 第二个数组
tolerate: int, 允许的不匹配元素数量(默认为 0,即完全匹配)
返回:
int: 最长公共后缀/前缀的长度(如果没有则返回 0)
"""
max_possible_n = min(len(lhs), len(rhs))
for n in range(max_possible_n, 0, -1):
mismatches = np.sum(lhs[-n:] != rhs[:n])
if mismatches <= tolerate:
return n
return 0
class SenseVoiceAx:
def __init__(self, model_path, max_len=68, language="auto", use_itn=True, tokenizer=None):
model_path_root = os.path.join(os.path.dirname(model_path), "..")
embedding_root = os.path.join(model_path_root, "embeddings")
self.frontend = WavFrontend(cmvn_file=f"{model_path_root}/am.mvn",
fs=16000,
window="hamming",
n_mels=80,
frame_length=25,
frame_shift=10,
lfr_m=7,
lfr_n=6,)
self.model = axe.InferenceSession(model_path)
self.sample_rate = 16000
self.tokenizer = tokenizer
self.blank_id = 0
self.max_len = max_len
self.padding = 16
self.lid_dict = {"auto": 0, "zh": 3, "en": 4, "yue": 7, "ja": 11, "ko": 12, "nospeech": 13}
self.lid_int_dict = {24884: 3, 24885: 4, 24888: 7, 24892: 11, 24896: 12, 24992: 13}
self.textnorm_dict = {"withitn": 14, "woitn": 15}
self.textnorm_int_dict = {25016: 14, 25017: 15}
self.emo_dict = {"unk": 25009, "happy": 25001, "sad": 25002, "angry": 25003, "neutral": 25004}
self.position_encoding = np.load(f"{embedding_root}/position_encoding.npy")
language_query = np.load(f"{embedding_root}/{language}.npy")
textnorm_query = np.load(f"{embedding_root}/withitn.npy") if use_itn else np.load(f"{embedding_root}/woitn.npy")
event_emo_query = np.load(f"{embedding_root}/event_emo.npy")
self.input_query = np.concatenate((textnorm_query, language_query, event_emo_query), axis=1)
self.query_num = self.input_query.shape[1]
def load_data(self, filepath: str) -> np.ndarray:
waveform, _ = librosa.load(filepath, sr=self.sample_rate)
return waveform.flatten()
@staticmethod
def pad_feats(feats: List[np.ndarray], max_feat_len: int) -> np.ndarray:
def pad_feat(feat: np.ndarray, cur_len: int) -> np.ndarray:
pad_width = ((0, max_feat_len - cur_len), (0, 0))
return np.pad(feat, pad_width, "constant", constant_values=0)
feat_res = [pad_feat(feat, feat.shape[0]) for feat in feats]
feats = np.array(feat_res).astype(np.float32)
return feats
def preprocess(self, waveform):
feats, feats_len = [], []
for wf in [waveform]:
speech, _ = self.frontend.fbank(wf)
feat, feat_len = self.frontend.lfr_cmvn(speech)
feats.append(feat)
feats_len.append(feat_len)
feats = self.pad_feats(feats, np.max(feats_len))
feats_len = np.array(feats_len).astype(np.int32)
return feats, feats_len
def postprocess(self, ctc_logits, encoder_out_lens):
# 提取数据
x = ctc_logits[0, :encoder_out_lens[0], :]
# 获取最大值索引
yseq = np.argmax(x, axis=-1)
# 去除连续重复元素
yseq = unique_consecutive_np(yseq, dim=-1)
# 创建掩码并过滤 blank_id
mask = yseq != self.blank_id
token_int = yseq[mask].tolist()
return token_int
def infer_waveform(self, waveform: np.ndarray):
feat, feat_len = self.preprocess(waveform)
slice_len = self.max_len - self.query_num
slice_num = int(np.ceil(feat.shape[1] / slice_len))
asr_res = []
prev_token_int = None
for i in range(slice_num):
if i == 0:
sub_feat = feat[:, i*slice_len:(i+1)*slice_len, :]
else:
sub_feat = feat[:, i*slice_len - self.padding:(i+1)*slice_len - self.padding, :]
# concat query
sub_feat = np.concatenate([self.input_query, sub_feat], axis=1)
real_len = sub_feat.shape[1]
if real_len < self.max_len:
sub_feat = np.concatenate([
sub_feat,
np.zeros((1, self.max_len - real_len, sub_feat.shape[-1]), dtype=np.float32)
],
axis=1)
masks = sequence_mask(np.array([self.max_len], dtype=np.int32), maxlen=real_len, dtype=np.float32)
outputs = self.model.run(None, {"speech": sub_feat,
"masks": masks,
"position_encoding": self.position_encoding})
ctc_logits, encoder_out_lens = outputs
token_int = self.postprocess(ctc_logits, encoder_out_lens)
# common prefix
if self.padding > 0 and prev_token_int is not None:
# prefix_len = common_prefix_len(prev_token_int, token_int)
prefix_len = longest_common_suffix_prefix_with_tolerance(prev_token_int, token_int, 6)
common_prefix = rich_transcription_postprocess(self.tokenizer.tokens2text(token_int[:prefix_len]))
asr_res[-1] = asr_res[-1][:-len(common_prefix)]
prev_token_int = np.copy(token_int)
asr_res.append(self.tokenizer.tokens2text(token_int))
return asr_res
def infer(self, filepath_or_data: Union[np.ndarray, str], print_rtf=True):
if isinstance(filepath_or_data, str):
waveform = self.load_data(filepath_or_data)
else:
waveform = filepath_or_data
total_time = waveform.shape[-1] / self.sample_rate
start = time.time()
asr_res = self.infer_waveform(waveform)
latency = time.time() - start
if print_rtf:
rtf = latency / total_time
print(f"RTF: {rtf} Latency: {latency}s Total length: {total_time}s")
return asr_res