Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- object-detection
|
4 |
+
---
|
5 |
+
|
6 |
+
## Dataset
|
7 |
+
|
8 |
+
The dataset was referenced in the Smartathon competition.It's consist of 7874 images annontated with 11 classes:
|
9 |
+
|
10 |
+
* GARBAGE 8597
|
11 |
+
* CONSTRUCTION_ROAD 2730
|
12 |
+
* POTHOLES 2625
|
13 |
+
* CLUTTER_SIDEWALK 2253
|
14 |
+
* BAD_BILLBOARD 1555
|
15 |
+
* GRAFFITI 1124
|
16 |
+
* SAND_ON_ROAD 748
|
17 |
+
* UNKEPT_FACADE 127
|
18 |
+
* FADED_SIGNAGE 107
|
19 |
+
* BROKEN_SIGNAGE 83
|
20 |
+
* BAD_STREETLIGHT 1
|
21 |
+
|
22 |
+
The dataset highly imbalanced and contain some humman errors.
|
23 |
+
|
24 |
+
## Our SEE Team Solution
|
25 |
+
|
26 |
+
1. Convert from Pascal VOC to YOLO format
|
27 |
+
2. Model Hyperparamter tuning
|
28 |
+
3. Train the data on Yolov7
|
29 |
+
4. Evaluate the model
|
30 |
+
5. Expalin Different techniques to Automation of Data Annotation
|
31 |
+
|
32 |
+
For our solution detials: [notebook](https://colab.research.google.com/drive/1mo3HxJrg8wDGp_FhkB_0qAs41XvQ3hjR?usp=sharing)
|
33 |
+
|
34 |
+
### How to use
|
35 |
+
|
36 |
+
1. You can just download file weights from the files section
|
37 |
+
2. clone yolov7 repo ```!git clone https://github.com/WongKinYiu/yolov7```
|
38 |
+
3. ensure your current working directory is yolov7 then run ```! pip install -r requirements.txt```
|
39 |
+
4. then run the detector script ```! python detect.py --weights " model.pt path" --img 736 --conf 0.27 --source "testing image path" --save-txt```
|