Upload folder using huggingface_hub
Browse files- README.md +53 -3
- feature_extractor/preprocessor_config.json +44 -0
- ip_adapter/image_encoder/config.json +23 -0
- ip_adapter/image_encoder/model.safetensors +3 -0
- ip_adapter/ip-adapter-plus_imagedream.bin +3 -0
- model_index.json +40 -0
- pipeline_mvdiffusion.py +578 -0
- scheduler/scheduler_config.json +19 -0
- text_encoder/config.json +25 -0
- text_encoder/model.safetensors +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +38 -0
- tokenizer/vocab.json +0 -0
- unet/config.json +77 -0
- unet/diffusion_pytorch_model.safetensors +3 -0
- vae/config.json +36 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
README.md
CHANGED
@@ -1,3 +1,53 @@
|
|
1 |
-
---
|
2 |
-
license:
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
# ImageDream-diffusers Model Card
|
5 |
+
This is a port of https://huggingface.co/Peng-Wang/ImageDream into diffusers.
|
6 |
+
|
7 |
+
And get ported weights from https://huggingface.co/ashawkey/imagedream-ipmv-diffuser
|
8 |
+
In ashawkey's work, UNet did not ported to diffusers.
|
9 |
+
|
10 |
+
This work has been fully ported to diffusers, including UNet.
|
11 |
+
And separated the IP-adapter-plus from the unet.
|
12 |
+
|
13 |
+
## Diffusers
|
14 |
+
```python
|
15 |
+
import torch
|
16 |
+
from diffusers import DiffusionPipeline
|
17 |
+
from diffusers.utils import make_image_grid
|
18 |
+
from PIL import Image
|
19 |
+
|
20 |
+
pipe = DiffusionPipeline.from_pretrained(
|
21 |
+
"kiigii/imagedream-ipmv-diffusers",
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
trust_remote_code=True,
|
24 |
+
)
|
25 |
+
pipe.load_ip_adapter()
|
26 |
+
pipe.to("cude")
|
27 |
+
|
28 |
+
prompt = "" # no need to input prompt
|
29 |
+
image = Image.open(...)
|
30 |
+
|
31 |
+
mv_images = pipe(
|
32 |
+
prompt=prompt,
|
33 |
+
ip_adapter_image=image,
|
34 |
+
guidance_scale=5,
|
35 |
+
num_inference_steps=30,
|
36 |
+
elevation=0,
|
37 |
+
num_images_per_prompt=1
|
38 |
+
).images
|
39 |
+
mv_grid = make_image_grid(mv_images[:4], 2, 2)
|
40 |
+
mv_grid.save("mv_image.png")
|
41 |
+
```
|
42 |
+
|
43 |
+
## Citation
|
44 |
+
```
|
45 |
+
@article{wang2023imagedream,
|
46 |
+
title={ImageDream: Image-Prompt Multi-view Diffusion for 3D Generation},
|
47 |
+
author={Wang, Peng and Shi, Yichun},
|
48 |
+
journal={arXiv preprint arXiv:2312.02201},
|
49 |
+
year={2023}
|
50 |
+
}
|
51 |
+
```
|
52 |
+
## Misuse, Malicious Use, and Out-of-Scope Use
|
53 |
+
The model should not be used to intentionally create or disseminate images that create hostile or alienating environments for people. This includes generating images that people would foreseeably find disturbing, distressing, or offensive; or content that propagates historical or current stereotypes.
|
feature_extractor/preprocessor_config.json
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_valid_processor_keys": [
|
3 |
+
"images",
|
4 |
+
"do_resize",
|
5 |
+
"size",
|
6 |
+
"resample",
|
7 |
+
"do_center_crop",
|
8 |
+
"crop_size",
|
9 |
+
"do_rescale",
|
10 |
+
"rescale_factor",
|
11 |
+
"do_normalize",
|
12 |
+
"image_mean",
|
13 |
+
"image_std",
|
14 |
+
"do_convert_rgb",
|
15 |
+
"return_tensors",
|
16 |
+
"data_format",
|
17 |
+
"input_data_format"
|
18 |
+
],
|
19 |
+
"crop_size": {
|
20 |
+
"height": 224,
|
21 |
+
"width": 224
|
22 |
+
},
|
23 |
+
"do_center_crop": true,
|
24 |
+
"do_convert_rgb": true,
|
25 |
+
"do_normalize": true,
|
26 |
+
"do_rescale": true,
|
27 |
+
"do_resize": true,
|
28 |
+
"image_mean": [
|
29 |
+
0.48145466,
|
30 |
+
0.4578275,
|
31 |
+
0.40821073
|
32 |
+
],
|
33 |
+
"image_processor_type": "CLIPImageProcessor",
|
34 |
+
"image_std": [
|
35 |
+
0.26862954,
|
36 |
+
0.26130258,
|
37 |
+
0.27577711
|
38 |
+
],
|
39 |
+
"resample": 3,
|
40 |
+
"rescale_factor": 0.00392156862745098,
|
41 |
+
"size": {
|
42 |
+
"shortest_edge": 224
|
43 |
+
}
|
44 |
+
}
|
ip_adapter/image_encoder/config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPVisionModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"dropout": 0.0,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_size": 1280,
|
10 |
+
"image_size": 224,
|
11 |
+
"initializer_factor": 1.0,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 5120,
|
14 |
+
"layer_norm_eps": 1e-05,
|
15 |
+
"model_type": "clip_vision_model",
|
16 |
+
"num_attention_heads": 16,
|
17 |
+
"num_channels": 3,
|
18 |
+
"num_hidden_layers": 32,
|
19 |
+
"patch_size": 14,
|
20 |
+
"projection_dim": 1024,
|
21 |
+
"torch_dtype": "float16",
|
22 |
+
"transformers_version": "4.41.2"
|
23 |
+
}
|
ip_adapter/image_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a56cfd4ffcf40be097c430324ec184cc37187f6dafef128ef9225438a3c03c4
|
3 |
+
size 1261595704
|
ip_adapter/ip-adapter-plus_imagedream.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ccadbfaf399f3a0e12eeaef7c1dc3a0002de801bb4d7b134bf85ca3204bcc4b
|
3 |
+
size 148229970
|
model_index.json
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": [
|
3 |
+
"pipeline_mvdiffusion",
|
4 |
+
"MVDiffusionPipeline"
|
5 |
+
],
|
6 |
+
"_diffusers_version": "0.29.1",
|
7 |
+
"feature_extractor": [
|
8 |
+
"transformers",
|
9 |
+
"CLIPImageProcessor"
|
10 |
+
],
|
11 |
+
"image_encoder": [
|
12 |
+
null,
|
13 |
+
null
|
14 |
+
],
|
15 |
+
"requires_safety_checker": false,
|
16 |
+
"safety_checker": [
|
17 |
+
null,
|
18 |
+
null
|
19 |
+
],
|
20 |
+
"scheduler": [
|
21 |
+
"diffusers",
|
22 |
+
"DDIMScheduler"
|
23 |
+
],
|
24 |
+
"text_encoder": [
|
25 |
+
"transformers",
|
26 |
+
"CLIPTextModel"
|
27 |
+
],
|
28 |
+
"tokenizer": [
|
29 |
+
"transformers",
|
30 |
+
"CLIPTokenizer"
|
31 |
+
],
|
32 |
+
"unet": [
|
33 |
+
"diffusers",
|
34 |
+
"UNet2DConditionModel"
|
35 |
+
],
|
36 |
+
"vae": [
|
37 |
+
"diffusers",
|
38 |
+
"AutoencoderKL"
|
39 |
+
]
|
40 |
+
}
|
pipeline_mvdiffusion.py
ADDED
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
try:
|
9 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
10 |
+
except:
|
11 |
+
|
12 |
+
class MultiPipelineCallbacks:
|
13 |
+
...
|
14 |
+
|
15 |
+
class PipelineCallback:
|
16 |
+
...
|
17 |
+
|
18 |
+
|
19 |
+
from diffusers.image_processor import PipelineImageInput
|
20 |
+
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
21 |
+
from diffusers.models.attention import Attention
|
22 |
+
from diffusers.models.attention_processor import AttnProcessor2_0
|
23 |
+
from diffusers.pipelines.stable_diffusion.pipeline_output import (
|
24 |
+
StableDiffusionPipelineOutput,
|
25 |
+
)
|
26 |
+
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import (
|
27 |
+
StableDiffusionPipeline,
|
28 |
+
rescale_noise_cfg,
|
29 |
+
retrieve_timesteps,
|
30 |
+
)
|
31 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import (
|
32 |
+
StableDiffusionSafetyChecker,
|
33 |
+
)
|
34 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
35 |
+
from diffusers.utils import deprecate
|
36 |
+
from transformers import (
|
37 |
+
CLIPImageProcessor,
|
38 |
+
CLIPTextModel,
|
39 |
+
CLIPTokenizer,
|
40 |
+
CLIPVisionModel,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
class MVDiffusionPipeline(StableDiffusionPipeline):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
vae: AutoencoderKL,
|
48 |
+
text_encoder: CLIPTextModel,
|
49 |
+
tokenizer: CLIPTokenizer,
|
50 |
+
unet: UNet2DConditionModel,
|
51 |
+
scheduler: KarrasDiffusionSchedulers,
|
52 |
+
safety_checker: StableDiffusionSafetyChecker,
|
53 |
+
feature_extractor: Optional[CLIPImageProcessor] = None,
|
54 |
+
image_encoder: Optional[CLIPVisionModel] = None,
|
55 |
+
requires_safety_checker: bool = False,
|
56 |
+
) -> None:
|
57 |
+
super().__init__(
|
58 |
+
vae=vae,
|
59 |
+
text_encoder=text_encoder,
|
60 |
+
tokenizer=tokenizer,
|
61 |
+
unet=add_mv_attn_processor(unet),
|
62 |
+
scheduler=scheduler,
|
63 |
+
safety_checker=safety_checker,
|
64 |
+
feature_extractor=feature_extractor,
|
65 |
+
image_encoder=image_encoder,
|
66 |
+
requires_safety_checker=requires_safety_checker,
|
67 |
+
)
|
68 |
+
self.num_views = 4
|
69 |
+
|
70 |
+
def load_ip_adapter(
|
71 |
+
self,
|
72 |
+
pretrained_model_name_or_path_or_dict: Union[
|
73 |
+
str, List[str], Dict[str, torch.Tensor]
|
74 |
+
] = "kiigii/imagedream-ipmv-diffusers",
|
75 |
+
subfolder: Union[str, List[str]] = "ip_adapter",
|
76 |
+
weight_name: Union[str, List[str]] = "ip-adapter-plus_imagedream.bin",
|
77 |
+
image_encoder_folder: Optional[str] = "image_encoder",
|
78 |
+
**kwargs,
|
79 |
+
) -> None:
|
80 |
+
super().load_ip_adapter(
|
81 |
+
pretrained_model_name_or_path_or_dict=pretrained_model_name_or_path_or_dict,
|
82 |
+
subfolder=subfolder,
|
83 |
+
weight_name=weight_name,
|
84 |
+
image_encoder_folder=image_encoder_folder,
|
85 |
+
**kwargs,
|
86 |
+
)
|
87 |
+
print("IP-Adapter Loaded.")
|
88 |
+
|
89 |
+
if weight_name == "ip-adapter-plus_imagedream.bin":
|
90 |
+
setattr(self.image_encoder, "visual_projection", nn.Identity())
|
91 |
+
add_mv_attn_processor(self.unet)
|
92 |
+
set_num_views(self.unet, self.num_views + 1)
|
93 |
+
|
94 |
+
def unload_ip_adapter(self) -> None:
|
95 |
+
super().unload_ip_adapter()
|
96 |
+
set_num_views(self.unet, self.num_views)
|
97 |
+
|
98 |
+
def encode_image_to_latents(
|
99 |
+
self,
|
100 |
+
image: PipelineImageInput,
|
101 |
+
height: int,
|
102 |
+
width: int,
|
103 |
+
device: torch.device,
|
104 |
+
num_images_per_prompt: int = 1,
|
105 |
+
):
|
106 |
+
dtype = next(self.vae.parameters()).dtype
|
107 |
+
|
108 |
+
if isinstance(image, torch.Tensor):
|
109 |
+
image = F.interpolate(
|
110 |
+
image,
|
111 |
+
(height, width),
|
112 |
+
mode="bilinear",
|
113 |
+
align_corners=False,
|
114 |
+
antialias=True,
|
115 |
+
)
|
116 |
+
else:
|
117 |
+
image = self.image_processor.preprocess(image, height, width)
|
118 |
+
|
119 |
+
# image should be in range [-1, 1]
|
120 |
+
image = image.to(device=device, dtype=dtype)
|
121 |
+
|
122 |
+
def vae_encode(image):
|
123 |
+
posterior = self.vae.encode(image).latent_dist
|
124 |
+
latents = posterior.sample() * self.vae.config.scaling_factor
|
125 |
+
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
126 |
+
return latents
|
127 |
+
|
128 |
+
latents = vae_encode(image)
|
129 |
+
uncond_latents = vae_encode(torch.zeros_like(image))
|
130 |
+
return latents, uncond_latents
|
131 |
+
|
132 |
+
@torch.no_grad()
|
133 |
+
def __call__(
|
134 |
+
self,
|
135 |
+
prompt: Union[str, List[str]] = None,
|
136 |
+
height: Optional[int] = None,
|
137 |
+
width: Optional[int] = None,
|
138 |
+
num_inference_steps: int = 50,
|
139 |
+
elevation: float = 0.0,
|
140 |
+
timesteps: List[int] = None,
|
141 |
+
sigmas: List[float] = None,
|
142 |
+
guidance_scale: float = 5.0,
|
143 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
144 |
+
num_images_per_prompt: Optional[int] = 1,
|
145 |
+
eta: float = 0.0,
|
146 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
147 |
+
latents: Optional[torch.Tensor] = None,
|
148 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
149 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
150 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
151 |
+
# StableDiffusion support `ip_adapter_image_embeds` but we don't use, and raise ValueError.
|
152 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
153 |
+
output_type: Optional[str] = "pil",
|
154 |
+
return_dict: bool = True,
|
155 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
156 |
+
guidance_rescale: float = 0.0,
|
157 |
+
clip_skip: Optional[int] = None,
|
158 |
+
callback_on_step_end: Optional[
|
159 |
+
Union[
|
160 |
+
Callable[[int, int, Dict], None],
|
161 |
+
PipelineCallback,
|
162 |
+
MultiPipelineCallbacks,
|
163 |
+
]
|
164 |
+
] = None,
|
165 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
166 |
+
**kwargs,
|
167 |
+
):
|
168 |
+
if ip_adapter_image_embeds is not None:
|
169 |
+
raise ValueError(
|
170 |
+
"do not use `ip_adapter_image_embeds` in ImageDream, use `ip_adapter_image`"
|
171 |
+
)
|
172 |
+
|
173 |
+
callback = kwargs.pop("callback", None)
|
174 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
175 |
+
|
176 |
+
if callback is not None:
|
177 |
+
deprecate(
|
178 |
+
"callback",
|
179 |
+
"1.0.0",
|
180 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
181 |
+
)
|
182 |
+
if callback_steps is not None:
|
183 |
+
deprecate(
|
184 |
+
"callback_steps",
|
185 |
+
"1.0.0",
|
186 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
187 |
+
)
|
188 |
+
|
189 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
190 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
191 |
+
|
192 |
+
# ImageDream number of views
|
193 |
+
if cross_attention_kwargs is None:
|
194 |
+
num_views = self.num_views
|
195 |
+
else:
|
196 |
+
cross_attention_kwargs.pop("num_views", self.num_views)
|
197 |
+
|
198 |
+
# 0. Default height and width to unet
|
199 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
200 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
201 |
+
# to deal with lora scaling and other possible forward hooks
|
202 |
+
|
203 |
+
# 1. Check inputs. Raise error if not correct
|
204 |
+
if prompt is None:
|
205 |
+
prompt = ""
|
206 |
+
self.check_inputs(
|
207 |
+
prompt,
|
208 |
+
height,
|
209 |
+
width,
|
210 |
+
callback_steps,
|
211 |
+
negative_prompt,
|
212 |
+
prompt_embeds,
|
213 |
+
negative_prompt_embeds,
|
214 |
+
ip_adapter_image,
|
215 |
+
None, # ip_adapter_image_embeds,
|
216 |
+
callback_on_step_end_tensor_inputs,
|
217 |
+
)
|
218 |
+
|
219 |
+
self._guidance_scale = guidance_scale
|
220 |
+
self._guidance_rescale = guidance_rescale
|
221 |
+
self._clip_skip = clip_skip
|
222 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
223 |
+
self._interrupt = False
|
224 |
+
|
225 |
+
# 2. Define call parameters
|
226 |
+
if prompt is not None and isinstance(prompt, str):
|
227 |
+
batch_size = 1
|
228 |
+
elif prompt is not None and isinstance(prompt, list):
|
229 |
+
batch_size = len(prompt)
|
230 |
+
else:
|
231 |
+
batch_size = prompt_embeds.shape[0]
|
232 |
+
|
233 |
+
device = self._execution_device
|
234 |
+
|
235 |
+
# 3. Encode input prompt
|
236 |
+
lora_scale = (
|
237 |
+
self.cross_attention_kwargs.get("scale", None)
|
238 |
+
if self.cross_attention_kwargs is not None
|
239 |
+
else None
|
240 |
+
)
|
241 |
+
|
242 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
243 |
+
prompt,
|
244 |
+
device,
|
245 |
+
num_images_per_prompt,
|
246 |
+
self.do_classifier_free_guidance,
|
247 |
+
negative_prompt,
|
248 |
+
prompt_embeds=prompt_embeds,
|
249 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
250 |
+
lora_scale=lora_scale,
|
251 |
+
clip_skip=self.clip_skip,
|
252 |
+
)
|
253 |
+
|
254 |
+
# camera parameter for ImageDream
|
255 |
+
camera = get_camera(
|
256 |
+
num_views, elevation=elevation, extra_view=ip_adapter_image is not None
|
257 |
+
).to(dtype=prompt_embeds.dtype, device=device)
|
258 |
+
camera = camera.repeat(batch_size * num_images_per_prompt, 1)
|
259 |
+
|
260 |
+
if ip_adapter_image is not None:
|
261 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
262 |
+
ip_adapter_image,
|
263 |
+
None, # ip_adapter_image_embeds,
|
264 |
+
device,
|
265 |
+
batch_size * num_images_per_prompt,
|
266 |
+
self.do_classifier_free_guidance,
|
267 |
+
)
|
268 |
+
# ImageDream
|
269 |
+
image_latents, negative_image_latents = self.encode_image_to_latents(
|
270 |
+
ip_adapter_image,
|
271 |
+
height,
|
272 |
+
width,
|
273 |
+
device,
|
274 |
+
batch_size * num_images_per_prompt,
|
275 |
+
)
|
276 |
+
num_views += 1
|
277 |
+
|
278 |
+
# For classifier free guidance, we need to do two forward passes.
|
279 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
280 |
+
# to avoid doing two forward passes
|
281 |
+
if self.do_classifier_free_guidance:
|
282 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
283 |
+
camera = torch.cat([camera] * 2)
|
284 |
+
if ip_adapter_image is not None:
|
285 |
+
image_latents = torch.cat([negative_image_latents, image_latents])
|
286 |
+
|
287 |
+
# Multi-view inputs for ImageDream.
|
288 |
+
prompt_embeds = prompt_embeds.repeat_interleave(num_views, dim=0)
|
289 |
+
if ip_adapter_image is not None:
|
290 |
+
image_embeds = [i.repeat_interleave(num_views, dim=0) for i in image_embeds]
|
291 |
+
|
292 |
+
# 4. Prepare timesteps
|
293 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
294 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
295 |
+
)
|
296 |
+
|
297 |
+
# 5. Prepare latent variables
|
298 |
+
num_channels_latents = self.unet.config.in_channels
|
299 |
+
latents = self.prepare_latents(
|
300 |
+
batch_size * num_images_per_prompt * num_views,
|
301 |
+
num_channels_latents,
|
302 |
+
height,
|
303 |
+
width,
|
304 |
+
prompt_embeds.dtype,
|
305 |
+
device,
|
306 |
+
generator,
|
307 |
+
latents,
|
308 |
+
)
|
309 |
+
|
310 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
311 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
312 |
+
|
313 |
+
# 6.1 Add image embeds for IP-Adapter
|
314 |
+
if ip_adapter_image is not None:
|
315 |
+
added_cond_kwargs = {"image_embeds": image_embeds}
|
316 |
+
else:
|
317 |
+
added_cond_kwargs = None
|
318 |
+
|
319 |
+
# 6.2 Optionally get Guidance Scale Embedding
|
320 |
+
timestep_cond = None
|
321 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
322 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(
|
323 |
+
batch_size * num_images_per_prompt
|
324 |
+
)
|
325 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
326 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
327 |
+
).to(device=device, dtype=latents.dtype)
|
328 |
+
|
329 |
+
set_num_views(self.unet, num_views)
|
330 |
+
|
331 |
+
# fmt: off
|
332 |
+
# 7. Denoising loop
|
333 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
334 |
+
self._num_timesteps = len(timesteps)
|
335 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
336 |
+
for i, t in enumerate(timesteps):
|
337 |
+
if self.interrupt:
|
338 |
+
continue
|
339 |
+
|
340 |
+
# expand the latents if we are doing classifier free guidance
|
341 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
342 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
343 |
+
|
344 |
+
if ip_adapter_image is not None:
|
345 |
+
latent_model_input[num_views - 1 :: num_views, :, :, :] = image_latents
|
346 |
+
# predict the noise residual
|
347 |
+
noise_pred = self.unet(
|
348 |
+
latent_model_input,
|
349 |
+
t,
|
350 |
+
class_labels=camera,
|
351 |
+
encoder_hidden_states=prompt_embeds,
|
352 |
+
timestep_cond=timestep_cond,
|
353 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
354 |
+
added_cond_kwargs=added_cond_kwargs,
|
355 |
+
return_dict=False,
|
356 |
+
)[0]
|
357 |
+
|
358 |
+
# perform guidance
|
359 |
+
if self.do_classifier_free_guidance:
|
360 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
361 |
+
noise_pred = torch.lerp(noise_pred_uncond, noise_pred_text, self.guidance_scale)
|
362 |
+
|
363 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
364 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
365 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
366 |
+
|
367 |
+
# compute the previous noisy sample x_t -> x_t-1
|
368 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
369 |
+
|
370 |
+
if callback_on_step_end is not None:
|
371 |
+
callback_kwargs = {}
|
372 |
+
for k in callback_on_step_end_tensor_inputs:
|
373 |
+
callback_kwargs[k] = locals()[k]
|
374 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
375 |
+
|
376 |
+
latents = callback_outputs.pop("latents", latents)
|
377 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
378 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
379 |
+
|
380 |
+
# call the callback, if provided
|
381 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
382 |
+
progress_bar.update()
|
383 |
+
if callback is not None and i % callback_steps == 0:
|
384 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
385 |
+
callback(step_idx, t, latents)
|
386 |
+
# fmt: on
|
387 |
+
if not output_type == "latent":
|
388 |
+
image = self.vae.decode(
|
389 |
+
latents / self.vae.config.scaling_factor,
|
390 |
+
return_dict=False,
|
391 |
+
generator=generator,
|
392 |
+
)[0]
|
393 |
+
image, has_nsfw_concept = self.run_safety_checker(
|
394 |
+
image, device, prompt_embeds.dtype
|
395 |
+
)
|
396 |
+
else:
|
397 |
+
image = latents
|
398 |
+
has_nsfw_concept = None
|
399 |
+
|
400 |
+
if has_nsfw_concept is None:
|
401 |
+
do_denormalize = [True] * image.shape[0]
|
402 |
+
else:
|
403 |
+
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
404 |
+
|
405 |
+
image = self.image_processor.postprocess(
|
406 |
+
image, output_type=output_type, do_denormalize=do_denormalize
|
407 |
+
)
|
408 |
+
|
409 |
+
# Offload all models
|
410 |
+
self.maybe_free_model_hooks()
|
411 |
+
|
412 |
+
if not return_dict:
|
413 |
+
return (image, has_nsfw_concept)
|
414 |
+
|
415 |
+
return StableDiffusionPipelineOutput(
|
416 |
+
images=image, nsfw_content_detected=has_nsfw_concept
|
417 |
+
)
|
418 |
+
|
419 |
+
|
420 |
+
# fmt: off
|
421 |
+
# Copied from ImageDream
|
422 |
+
# https://github.com/bytedance/ImageDream/blob/main/extern/ImageDream/imagedream/camera_utils.py
|
423 |
+
|
424 |
+
|
425 |
+
def create_camera_to_world_matrix(elevation, azimuth):
|
426 |
+
elevation = np.radians(elevation)
|
427 |
+
azimuth = np.radians(azimuth)
|
428 |
+
# Convert elevation and azimuth angles to Cartesian coordinates on a unit sphere
|
429 |
+
x = np.cos(elevation) * np.sin(azimuth)
|
430 |
+
y = np.sin(elevation)
|
431 |
+
z = np.cos(elevation) * np.cos(azimuth)
|
432 |
+
|
433 |
+
# Calculate camera position, target, and up vectors
|
434 |
+
camera_pos = np.array([x, y, z])
|
435 |
+
target = np.array([0, 0, 0])
|
436 |
+
up = np.array([0, 1, 0])
|
437 |
+
|
438 |
+
# Construct view matrix
|
439 |
+
forward = target - camera_pos
|
440 |
+
forward /= np.linalg.norm(forward)
|
441 |
+
right = np.cross(forward, up)
|
442 |
+
right /= np.linalg.norm(right)
|
443 |
+
new_up = np.cross(right, forward)
|
444 |
+
new_up /= np.linalg.norm(new_up)
|
445 |
+
cam2world = np.eye(4)
|
446 |
+
cam2world[:3, :3] = np.array([right, new_up, -forward]).T
|
447 |
+
cam2world[:3, 3] = camera_pos
|
448 |
+
return cam2world
|
449 |
+
|
450 |
+
|
451 |
+
def convert_opengl_to_blender(camera_matrix):
|
452 |
+
if isinstance(camera_matrix, np.ndarray):
|
453 |
+
# Construct transformation matrix to convert from OpenGL space to Blender space
|
454 |
+
flip_yz = np.array([[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
|
455 |
+
camera_matrix_blender = np.dot(flip_yz, camera_matrix)
|
456 |
+
else:
|
457 |
+
# Construct transformation matrix to convert from OpenGL space to Blender space
|
458 |
+
flip_yz = torch.tensor(
|
459 |
+
[[1, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 1]]
|
460 |
+
)
|
461 |
+
if camera_matrix.ndim == 3:
|
462 |
+
flip_yz = flip_yz.unsqueeze(0)
|
463 |
+
camera_matrix_blender = torch.matmul(flip_yz.to(camera_matrix), camera_matrix)
|
464 |
+
return camera_matrix_blender
|
465 |
+
|
466 |
+
|
467 |
+
def normalize_camera(camera_matrix):
|
468 |
+
"""normalize the camera location onto a unit-sphere"""
|
469 |
+
if isinstance(camera_matrix, np.ndarray):
|
470 |
+
camera_matrix = camera_matrix.reshape(-1, 4, 4)
|
471 |
+
translation = camera_matrix[:, :3, 3]
|
472 |
+
translation = translation / (
|
473 |
+
np.linalg.norm(translation, axis=1, keepdims=True) + 1e-8
|
474 |
+
)
|
475 |
+
camera_matrix[:, :3, 3] = translation
|
476 |
+
else:
|
477 |
+
camera_matrix = camera_matrix.reshape(-1, 4, 4)
|
478 |
+
translation = camera_matrix[:, :3, 3]
|
479 |
+
translation = translation / (
|
480 |
+
torch.norm(translation, dim=1, keepdim=True) + 1e-8
|
481 |
+
)
|
482 |
+
camera_matrix[:, :3, 3] = translation
|
483 |
+
return camera_matrix.reshape(-1, 16)
|
484 |
+
|
485 |
+
|
486 |
+
def get_camera(
|
487 |
+
num_frames,
|
488 |
+
elevation=15,
|
489 |
+
azimuth_start=0,
|
490 |
+
azimuth_span=360,
|
491 |
+
blender_coord=True,
|
492 |
+
extra_view=False,
|
493 |
+
):
|
494 |
+
angle_gap = azimuth_span / num_frames
|
495 |
+
cameras = []
|
496 |
+
for azimuth in np.arange(azimuth_start, azimuth_span + azimuth_start, angle_gap):
|
497 |
+
camera_matrix = create_camera_to_world_matrix(elevation, azimuth)
|
498 |
+
if blender_coord:
|
499 |
+
camera_matrix = convert_opengl_to_blender(camera_matrix)
|
500 |
+
cameras.append(camera_matrix.flatten())
|
501 |
+
|
502 |
+
if extra_view:
|
503 |
+
dim = len(cameras[0])
|
504 |
+
cameras.append(np.zeros(dim))
|
505 |
+
return torch.tensor(np.stack(cameras, 0)).float()
|
506 |
+
# fmt: on
|
507 |
+
|
508 |
+
|
509 |
+
def add_mv_attn_processor(unet: UNet2DConditionModel, num_views: int = 4) -> UNet2DConditionModel:
|
510 |
+
attn_procs = {}
|
511 |
+
for key, attn_processor in unet.attn_processors.items():
|
512 |
+
if "attn1" in key:
|
513 |
+
attn_procs[key] = MVAttnProcessor2_0(num_views)
|
514 |
+
else:
|
515 |
+
attn_procs[key] = attn_processor
|
516 |
+
unet.set_attn_processor(attn_procs)
|
517 |
+
return unet
|
518 |
+
|
519 |
+
|
520 |
+
def set_num_views(unet: UNet2DConditionModel, num_views: int) -> UNet2DConditionModel:
|
521 |
+
for key, attn_processor in unet.attn_processors.items():
|
522 |
+
if isinstance(attn_processor, MVAttnProcessor2_0):
|
523 |
+
attn_processor.num_views = num_views
|
524 |
+
return unet
|
525 |
+
|
526 |
+
|
527 |
+
class MVAttnProcessor2_0(AttnProcessor2_0):
|
528 |
+
def __init__(self, num_views: int = 4):
|
529 |
+
super().__init__()
|
530 |
+
self.num_views = num_views
|
531 |
+
|
532 |
+
def __call__(
|
533 |
+
self,
|
534 |
+
attn: Attention,
|
535 |
+
hidden_states: torch.Tensor,
|
536 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
537 |
+
attention_mask: Optional[torch.Tensor] = None,
|
538 |
+
temb: Optional[torch.Tensor] = None,
|
539 |
+
*args,
|
540 |
+
**kwargs,
|
541 |
+
):
|
542 |
+
if self.num_views == 1:
|
543 |
+
return super().__call__(
|
544 |
+
attn=attn,
|
545 |
+
hidden_states=hidden_states,
|
546 |
+
encoder_hidden_states=encoder_hidden_states,
|
547 |
+
attention_mask=attention_mask,
|
548 |
+
temb=temb,
|
549 |
+
*args,
|
550 |
+
**kwargs,
|
551 |
+
)
|
552 |
+
|
553 |
+
input_ndim = hidden_states.ndim
|
554 |
+
B = hidden_states.size(0)
|
555 |
+
if B % self.num_views:
|
556 |
+
raise ValueError(
|
557 |
+
f"`batch_size`(got {B}) must be a multiple of `num_views`(got {self.num_views})."
|
558 |
+
)
|
559 |
+
real_B = B // self.num_views
|
560 |
+
if input_ndim == 4:
|
561 |
+
H, W = hidden_states.shape[2:]
|
562 |
+
hidden_states = hidden_states.reshape(real_B, -1, H, W).transpose(1, 2)
|
563 |
+
else:
|
564 |
+
hidden_states = hidden_states.reshape(real_B, -1, hidden_states.size(-1))
|
565 |
+
hidden_states = super().__call__(
|
566 |
+
attn=attn,
|
567 |
+
hidden_states=hidden_states,
|
568 |
+
encoder_hidden_states=encoder_hidden_states,
|
569 |
+
attention_mask=attention_mask,
|
570 |
+
temb=temb,
|
571 |
+
*args,
|
572 |
+
**kwargs,
|
573 |
+
)
|
574 |
+
if input_ndim == 4:
|
575 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(B, -1, H, W)
|
576 |
+
else:
|
577 |
+
hidden_states = hidden_states.reshape(B, -1, hidden_states.size(-1))
|
578 |
+
return hidden_states
|
scheduler/scheduler_config.json
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "DDIMScheduler",
|
3 |
+
"_diffusers_version": "0.29.0",
|
4 |
+
"beta_end": 0.012,
|
5 |
+
"beta_schedule": "scaled_linear",
|
6 |
+
"beta_start": 0.00085,
|
7 |
+
"clip_sample": false,
|
8 |
+
"clip_sample_range": 1.0,
|
9 |
+
"dynamic_thresholding_ratio": 0.995,
|
10 |
+
"num_train_timesteps": 1000,
|
11 |
+
"prediction_type": "epsilon",
|
12 |
+
"rescale_betas_zero_snr": false,
|
13 |
+
"sample_max_value": 1.0,
|
14 |
+
"set_alpha_to_one": false,
|
15 |
+
"steps_offset": 1,
|
16 |
+
"thresholding": false,
|
17 |
+
"timestep_spacing": "leading",
|
18 |
+
"trained_betas": null
|
19 |
+
}
|
text_encoder/config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "stabilityai/stable-diffusion-2-1",
|
3 |
+
"architectures": [
|
4 |
+
"CLIPTextModel"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"dropout": 0.0,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_size": 1024,
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 77,
|
17 |
+
"model_type": "clip_text_model",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 23,
|
20 |
+
"pad_token_id": 1,
|
21 |
+
"projection_dim": 512,
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.41.2",
|
24 |
+
"vocab_size": 49408
|
25 |
+
}
|
text_encoder/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bc1827c465450322616f06dea41596eac7d493f4e95904dcb51f0fc745c4e13f
|
3 |
+
size 680820392
|
tokenizer/merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer/special_tokens_map.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|startoftext|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": true,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|endoftext|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": "!",
|
17 |
+
"unk_token": {
|
18 |
+
"content": "<|endoftext|>",
|
19 |
+
"lstrip": false,
|
20 |
+
"normalized": true,
|
21 |
+
"rstrip": false,
|
22 |
+
"single_word": false
|
23 |
+
}
|
24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"0": {
|
5 |
+
"content": "!",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"49406": {
|
13 |
+
"content": "<|startoftext|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": true,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"49407": {
|
21 |
+
"content": "<|endoftext|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": true,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
}
|
28 |
+
},
|
29 |
+
"bos_token": "<|startoftext|>",
|
30 |
+
"clean_up_tokenization_spaces": true,
|
31 |
+
"do_lower_case": true,
|
32 |
+
"eos_token": "<|endoftext|>",
|
33 |
+
"errors": "replace",
|
34 |
+
"model_max_length": 77,
|
35 |
+
"pad_token": "!",
|
36 |
+
"tokenizer_class": "CLIPTokenizer",
|
37 |
+
"unk_token": "<|endoftext|>"
|
38 |
+
}
|
tokenizer/vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
unet/config.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "UNet2DConditionModel",
|
3 |
+
"_diffusers_version": "0.29.0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"addition_embed_type": null,
|
6 |
+
"addition_embed_type_num_heads": 64,
|
7 |
+
"addition_time_embed_dim": null,
|
8 |
+
"attention_head_dim": [
|
9 |
+
5,
|
10 |
+
10,
|
11 |
+
20,
|
12 |
+
20
|
13 |
+
],
|
14 |
+
"attention_type": "default",
|
15 |
+
"block_out_channels": [
|
16 |
+
320,
|
17 |
+
640,
|
18 |
+
1280,
|
19 |
+
1280
|
20 |
+
],
|
21 |
+
"center_input_sample": false,
|
22 |
+
"class_embed_type": "projection",
|
23 |
+
"class_embeddings_concat": false,
|
24 |
+
"conv_in_kernel": 3,
|
25 |
+
"conv_out_kernel": 3,
|
26 |
+
"cross_attention_dim": 1024,
|
27 |
+
"cross_attention_norm": null,
|
28 |
+
"down_block_types": [
|
29 |
+
"CrossAttnDownBlock2D",
|
30 |
+
"CrossAttnDownBlock2D",
|
31 |
+
"CrossAttnDownBlock2D",
|
32 |
+
"DownBlock2D"
|
33 |
+
],
|
34 |
+
"downsample_padding": 1,
|
35 |
+
"dropout": 0.0,
|
36 |
+
"dual_cross_attention": false,
|
37 |
+
"encoder_hid_dim": null,
|
38 |
+
"encoder_hid_dim_type": null,
|
39 |
+
"flip_sin_to_cos": true,
|
40 |
+
"freq_shift": 0,
|
41 |
+
"in_channels": 4,
|
42 |
+
"layers_per_block": [
|
43 |
+
2,
|
44 |
+
2,
|
45 |
+
2,
|
46 |
+
2
|
47 |
+
],
|
48 |
+
"mid_block_only_cross_attention": null,
|
49 |
+
"mid_block_scale_factor": 1,
|
50 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
51 |
+
"norm_eps": 1e-05,
|
52 |
+
"norm_num_groups": 32,
|
53 |
+
"num_attention_heads": null,
|
54 |
+
"num_class_embeds": null,
|
55 |
+
"only_cross_attention": false,
|
56 |
+
"out_channels": 4,
|
57 |
+
"projection_class_embeddings_input_dim": 16,
|
58 |
+
"resnet_out_scale_factor": 1.0,
|
59 |
+
"resnet_skip_time_act": false,
|
60 |
+
"resnet_time_scale_shift": "default",
|
61 |
+
"reverse_transformer_layers_per_block": null,
|
62 |
+
"sample_size": 32,
|
63 |
+
"time_cond_proj_dim": null,
|
64 |
+
"time_embedding_act_fn": null,
|
65 |
+
"time_embedding_dim": null,
|
66 |
+
"time_embedding_type": "positional",
|
67 |
+
"timestep_post_act": null,
|
68 |
+
"transformer_layers_per_block": 1,
|
69 |
+
"up_block_types": [
|
70 |
+
"UpBlock2D",
|
71 |
+
"CrossAttnUpBlock2D",
|
72 |
+
"CrossAttnUpBlock2D",
|
73 |
+
"CrossAttnUpBlock2D"
|
74 |
+
],
|
75 |
+
"upcast_attention": false,
|
76 |
+
"use_linear_projection": true
|
77 |
+
}
|
unet/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f798a8be7b7473f6ffff22168e2d99b80ec4afdf339cd273d1b0036b125efae
|
3 |
+
size 1735228080
|
vae/config.json
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_class_name": "AutoencoderKL",
|
3 |
+
"_diffusers_version": "0.29.0",
|
4 |
+
"act_fn": "silu",
|
5 |
+
"block_out_channels": [
|
6 |
+
128,
|
7 |
+
256,
|
8 |
+
512,
|
9 |
+
512
|
10 |
+
],
|
11 |
+
"down_block_types": [
|
12 |
+
"DownEncoderBlock2D",
|
13 |
+
"DownEncoderBlock2D",
|
14 |
+
"DownEncoderBlock2D",
|
15 |
+
"DownEncoderBlock2D"
|
16 |
+
],
|
17 |
+
"force_upcast": true,
|
18 |
+
"in_channels": 3,
|
19 |
+
"latent_channels": 4,
|
20 |
+
"latents_mean": null,
|
21 |
+
"latents_std": null,
|
22 |
+
"layers_per_block": 2,
|
23 |
+
"norm_num_groups": 32,
|
24 |
+
"out_channels": 3,
|
25 |
+
"sample_size": 256,
|
26 |
+
"scaling_factor": 0.18215,
|
27 |
+
"shift_factor": null,
|
28 |
+
"up_block_types": [
|
29 |
+
"UpDecoderBlock2D",
|
30 |
+
"UpDecoderBlock2D",
|
31 |
+
"UpDecoderBlock2D",
|
32 |
+
"UpDecoderBlock2D"
|
33 |
+
],
|
34 |
+
"use_post_quant_conv": true,
|
35 |
+
"use_quant_conv": true
|
36 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e4c08995484ee61270175e9e7a072b66a6e4eeb5f0c266667fe1f45b90daf9a
|
3 |
+
size 167335342
|