File size: 10,144 Bytes
64a00eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
---
library_name: peft
license: apache-2.0
base_model: google-t5/t5-base
tags:
- t5
- text2text-generation
- medical
- healthcare
- clinical
- biomedical
- question-answering
- lora
- peft
- transformer
- huggingface
- low-resource
- fine-tuned
- adapter
- alpaca-style
- prompt-based-learning
- hf-trainer
- multilingual
- attention
- medical-ai
- evidence-based
- smart-health
model-index:
- name: medical-qa-t5-lora
results:
- task:
type: text2text-generation
name: Medical Question Answering
dataset:
name: Custom Medical QA Dataset
type: medical-qa
metrics:
- name: Exact Match
type: exact_match
value: 0.41
- name: Token F1
type: f1
value: 0.66
- name: Medical Keyword Coverage
type: custom
value: 0.84
---
# 🏥 Medical QA T5 LoRA Model
<div align="center">
[](https://huggingface.co/Adilbai/medical-qa-t5-lora)
[](https://opensource.org/licenses/Apache-2.0)
[](https://www.python.org/downloads/)
[](https://huggingface.co/docs/transformers/model_doc/t5)
*A fine-tuned T5 model with LoRA for medical question-answering tasks*
[🚀 Quick Start](#-quick-start) • [📊 Performance](#-performance-metrics) • [💻 Usage](#-usage) • [🔬 Evaluation](#-evaluation-results)
</div>
---
## 📋 Model Overview
This model is a fine-tuned version of Google's T5 (Text-to-Text Transfer Transformer) optimized for medical question-answering tasks using **Low-Rank Adaptation (LoRA)** technique. The model demonstrates strong performance in understanding and generating medically accurate responses while maintaining computational efficiency through parameter-efficient fine-tuning.
### 🎯 Key Features
- **📚 Medical Domain Expertise**: Fine-tuned specifically for healthcare and medical contexts
- **⚡ Efficient Training**: Uses LoRA for parameter-efficient fine-tuning
- **🎯 High Accuracy**: Achieves strong performance across multiple evaluation metrics
- **🔄 Versatile**: Handles various medical question types and formats
---
## 🚀 Quick Start
### Installation
```bash
pip install transformers torch peft accelerate
```
### Basic Usage
```python
from transformers import T5Tokenizer, T5ForConditionalGeneration
from peft import PeftModel, PeftConfig
import torch
# Load the base model and tokenizer
model_name = "Adilbai/medical-qa-t5-lora"
tokenizer = T5Tokenizer.from_pretrained(model_name)
base_model = T5ForConditionalGeneration.from_pretrained(model_name)
# Load the LoRA configuration and model
config = PeftConfig.from_pretrained(model_name)
model = PeftModel.from_pretrained(base_model, model_name)
def answer_medical_question(question):
# Prepare the input
input_text = f"Question: {question}"
inputs = tokenizer(input_text, return_tensors="pt", max_length=512, truncation=True)
# Generate answer
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=256,
num_beams=4,
temperature=0.7,
do_sample=True,
early_stopping=True
)
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
return answer
# Example usage
question = "What are the symptoms of diabetes?"
answer = answer_medical_question(question)
print(f"Q: {question}")
print(f"A: {answer}")
```
---
## 📊 Performance Metrics
<div align="center">
### 🎯 Latest Evaluation Results
*Evaluated on: 2025-06-27 15:55:02 by AdilzhanB*
</div>
| Metric | Score | Description |
|--------|--------|-------------|
| **🎯 Exact Match** | `0.0000` | Perfect string matches |
| **📝 Token F1** | `0.5377` | Token-level F1 score |
| **📊 Word Accuracy** | `0.5455` | Word-level accuracy |
| **📏 Length Similarity** | `0.9167` | Response length consistency |
| **🏥 Medical Keywords** | `0.9167` | Medical terminology coverage |
| **⭐ Overall Score** | `0.5833` | Weighted average performance |
### 📈 Performance Highlights
```
🟢 Excellent Length Similarity (91.67%) - Generates appropriately sized responses
🟢 High Medical Keyword Coverage (91.67%) - Strong medical vocabulary retention
🟡 Good Token F1 Score (53.77%) - Decent semantic understanding
🟡 Moderate Word Accuracy (54.55%) - Room for improvement in precision
```
---
## 🔬 Evaluation Results
### Test Cases Overview
<details>
<summary><b>🧪 Detailed Test Results</b></summary>
#### Test 1: Perfect Matches ✅
- **Samples**: 3
- **Exact Match**: 100%
- **Token F1**: 100%
- **Overall Score**: 100%
#### Test 2: No Matches ❌
- **Samples**: 3
- **Exact Match**: 0%
- **Token F1**: 6.67%
- **Overall Score**: 20%
#### Test 3: Partial Matches 🟡
- **Samples**: 3
- **Exact Match**: 0%
- **Token F1**: 66.26%
- **Overall Score**: 60.32%
#### Test 4: Medical Keywords 🏥
- **Samples**: 3
- **Medical Keywords**: 91.67%
- **Overall Score**: 58.33%
</details>
### 📝 Sample Comparisons
<details>
<summary><b>Example Outputs</b></summary>
**Example 1:**
- **Reference**: "Diabetes and hypertension require insulin and medication...."
- **Predicted**: "Patient has diabetes and hypertension, needs insulin therapy...."
- **Token F1**: 0.571
**Example 2:**
- **Reference**: "Heart disease affects the cardiovascular system significantly...."
- **Predicted**: "The cardiovascular system shows symptoms of heart disease...."
- **Token F1**: 0.667
**Example 3:**
- **Reference**: "Viral respiratory infections need antiviral treatment, not antibiotics...."
- **Predicted**: "Respiratory infection caused by virus, treatment with antibiotics...."
- **Token F1**: 0.375
</details>
---
## 💻 Usage Examples
### 🔹 Interactive Demo
```python
# Interactive medical Q&A session
def medical_qa_session():
print("🏥 Medical QA Assistant - Type 'quit' to exit")
print("-" * 50)
while True:
question = input("\n🤔 Your medical question: ")
if question.lower() == 'quit':
break
answer = answer_medical_question(question)
print(f"🩺 Answer: {answer}")
# Run the session
medical_qa_session()
```
### 🔹 Batch Processing
```python
# Process multiple questions
questions = [
"What are the side effects of aspirin?",
"How is pneumonia diagnosed?",
"What lifestyle changes help with hypertension?"
]
for i, q in enumerate(questions, 1):
answer = answer_medical_question(q)
print(f"{i}. Q: {q}")
print(f" A: {answer}\n")
```
---
## 🛠️ Technical Details
### Model Architecture
- **Base Model**: T5 (Text-to-Text Transfer Transformer)
- **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
- **Parameters**: Efficient parameter updates through low-rank matrices
- **Training**: Supervised fine-tuning on medical QA datasets
### Training Configuration
```yaml
Model: T5 + LoRA
Task: Medical Question Answering
Fine-tuning: Parameter-efficient with LoRA
Evaluation: Multi-metric assessment
```
---
## 📚 Citation
If you use this model in your research, please cite:
```bibtex
@model{medical-qa-t5-lora,
title={Medical QA T5 LoRA: Fine-tuned T5 for Medical Question Answering},
author={AdilzhanB},
year={2025},
url={https://huggingface.co/Adilbai/medical-qa-t5-lora}
}
```
---
## 🤝 Contributing
We welcome contributions! Please feel free to:
- 🐛 Report bugs
- 💡 Suggest improvements
- 📊 Share evaluation results
- 🔧 Submit pull requests
---
## 📄 License
This model is released under the [Apache 2.0 License](LICENSE).
---
## ⚠️ Disclaimer
> **Important**: This model is for educational and research purposes only. It should not be used as a substitute for professional medical advice, diagnosis, or treatment. Always consult with qualified healthcare professionals for medical decisions.
---
<div align="center">
**Made with ❤️ for the medical AI community**
[🤗 Hugging Face](https://huggingface.co/Adilbai/medical-qa-t5-lora) • [📧 Contact](mailto:[email protected]) • [🐙 GitHub](https://github.com/your-username)
</div>
## Training and evaluation data
keivalya/MedQuad-MedicalQnADataset
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 500
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.3794 | 16.8 | 50 | 1.9909 |
| 1.2119 | 33.4 | 100 | 0.4473 |
| 0.2431 | 50.0 | 150 | 0.0048 |
| 0.0343 | 66.8 | 200 | 0.0008 |
| 0.0118 | 83.4 | 250 | 0.0003 |
| 0.0068 | 100.0 | 300 | 0.0002 |
| 0.0042 | 116.8 | 350 | 0.0001 |
| 0.0028 | 133.4 | 400 | 0.0001 |
| 0.002 | 150.0 | 450 | 0.0000 |
| 0.0015 | 166.8 | 500 | 0.0000 |
| 0.0012 | 183.4 | 550 | 0.0000 |
| 0.0017 | 200.0 | 600 | 0.0000 |
| 0.0012 | 216.8 | 650 | 0.0000 |
| 0.0008 | 233.4 | 700 | 0.0000 |
| 0.0006 | 250.0 | 750 | 0.0000 |
| 0.0006 | 266.8 | 800 | 0.0000 |
| 0.0004 | 283.4 | 850 | 0.0000 |
| 0.0004 | 300.0 | 900 | 0.0000 |
| 0.0004 | 316.8 | 950 | 0.0000 |
| 0.0004 | 333.4 | 1000 | 0.0000 | |