Upload DistilBertForSequenceClassification
Browse files- README.md +199 -0
- config.json +268 -0
- model.safetensors +3 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,268 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation": "gelu",
|
3 |
+
"architectures": [
|
4 |
+
"DistilBertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_dropout": 0.1,
|
7 |
+
"dim": 768,
|
8 |
+
"dropout": 0.1,
|
9 |
+
"hidden_dim": 3072,
|
10 |
+
"id2label": {
|
11 |
+
"0": "AI Policy and Regulations",
|
12 |
+
"1": "AI Research",
|
13 |
+
"2": "AI Startups",
|
14 |
+
"3": "Adventure",
|
15 |
+
"4": "Aerobics & Cardio",
|
16 |
+
"5": "Africa Business & Economics",
|
17 |
+
"6": "Africa politics",
|
18 |
+
"7": "Agriculture",
|
19 |
+
"8": "Art and Culture",
|
20 |
+
"9": "Asia Business & Economics",
|
21 |
+
"10": "Asia Politics",
|
22 |
+
"11": "Australia Business & Economics",
|
23 |
+
"12": "Australia Politics",
|
24 |
+
"13": "Automotive and Transportation",
|
25 |
+
"14": "Autoracing",
|
26 |
+
"15": "Banking & Finance",
|
27 |
+
"16": "Baseball",
|
28 |
+
"17": "Basketball",
|
29 |
+
"18": "Biology",
|
30 |
+
"19": "Bonds Trading & Speculation",
|
31 |
+
"20": "Boxing",
|
32 |
+
"21": "Celebrity",
|
33 |
+
"22": "Chemistry and Material Sciences",
|
34 |
+
"23": "Chess",
|
35 |
+
"24": "Civil Rights Activism",
|
36 |
+
"25": "Climate Change",
|
37 |
+
"26": "Clothes",
|
38 |
+
"27": "Computer Hardware",
|
39 |
+
"28": "Consumer & Retail",
|
40 |
+
"29": "Consumer Electronics",
|
41 |
+
"30": "Cosmetics",
|
42 |
+
"31": "Cosmology & The Universe",
|
43 |
+
"32": "Crypto Trading & Speculation",
|
44 |
+
"33": "Culture",
|
45 |
+
"34": "Discover",
|
46 |
+
"35": "Disease Research",
|
47 |
+
"36": "Drug Discoveries",
|
48 |
+
"37": "Emerging Technologies",
|
49 |
+
"38": "Energy & Natural Resources",
|
50 |
+
"39": "Environmental Science",
|
51 |
+
"40": "Epidemics & Outbreaks",
|
52 |
+
"41": "Europe Business & Economics",
|
53 |
+
"42": "Europe Politics",
|
54 |
+
"43": "Extreme Sports",
|
55 |
+
"44": "Extreme Weather and Cataclysms",
|
56 |
+
"45": "Festivals",
|
57 |
+
"46": "Food",
|
58 |
+
"47": "Football",
|
59 |
+
"48": "Forex Trading & Speculation",
|
60 |
+
"49": "Gaming & VR",
|
61 |
+
"50": "Global Health",
|
62 |
+
"51": "Global Organizations",
|
63 |
+
"52": "Golf",
|
64 |
+
"53": "Health Policy",
|
65 |
+
"54": "Hockey",
|
66 |
+
"55": "Human Rights",
|
67 |
+
"56": "India Business & Economics",
|
68 |
+
"57": "India Politics",
|
69 |
+
"58": "Inflation",
|
70 |
+
"59": "Interest Rates",
|
71 |
+
"60": "Jewelry",
|
72 |
+
"61": "Keto, Paleo, Vegan, Mediterranean",
|
73 |
+
"62": "Labor Activism",
|
74 |
+
"63": "Latin America Economy",
|
75 |
+
"64": "Latin America Politics",
|
76 |
+
"65": "Longevity",
|
77 |
+
"66": "MMA",
|
78 |
+
"67": "Medical Innovations",
|
79 |
+
"68": "Men's Health",
|
80 |
+
"69": "Mental Health Treatments",
|
81 |
+
"70": "Middle East Business & Economics",
|
82 |
+
"71": "Middle East Politics",
|
83 |
+
"72": "Movies",
|
84 |
+
"73": "Music",
|
85 |
+
"74": "Nonprofit, Charities, & Fundraising",
|
86 |
+
"75": "Nutrition Research",
|
87 |
+
"76": "Olympic Sports",
|
88 |
+
"77": "Operating Systems",
|
89 |
+
"78": "Other Sports",
|
90 |
+
"79": "Personal Finance & Financial Education",
|
91 |
+
"80": "Photographers",
|
92 |
+
"81": "Physics",
|
93 |
+
"82": "Real Estate & Housing",
|
94 |
+
"83": "Renewable Energy",
|
95 |
+
"84": "Royal Families",
|
96 |
+
"85": "SCOTUS",
|
97 |
+
"86": "Soccer",
|
98 |
+
"87": "Social Media",
|
99 |
+
"88": "Software Applications",
|
100 |
+
"89": "Space Exploration",
|
101 |
+
"90": "Space Technology",
|
102 |
+
"91": "Stocks Trading & Speculation",
|
103 |
+
"92": "Stress and Wellness",
|
104 |
+
"93": "Swimming",
|
105 |
+
"94": "Tech Giants",
|
106 |
+
"95": "Tech Industry Trends",
|
107 |
+
"96": "Tech Startups",
|
108 |
+
"97": "Television",
|
109 |
+
"98": "Tennis",
|
110 |
+
"99": "US Campaigns & Elections",
|
111 |
+
"100": "US Circuit and Appeals Courts",
|
112 |
+
"101": "US Congress",
|
113 |
+
"102": "US Crime, Violence, Terrorism & cybercrime",
|
114 |
+
"103": "US Federal Elections",
|
115 |
+
"104": "US Federal Policies",
|
116 |
+
"105": "US Involvement in Foreign Conflicts",
|
117 |
+
"106": "US Local Elections",
|
118 |
+
"107": "US Local Policies",
|
119 |
+
"108": "US Police Misconduct",
|
120 |
+
"109": "US Political Corruption",
|
121 |
+
"110": "Unemployment",
|
122 |
+
"111": "United Kingdom Business & Economics",
|
123 |
+
"112": "United Kingdom Politics",
|
124 |
+
"113": "Vaccine Development",
|
125 |
+
"114": "Video Games",
|
126 |
+
"115": "Weightlifting & Bodybuilding",
|
127 |
+
"116": "Women\u2019s Health",
|
128 |
+
"117": "Workforce / Labor",
|
129 |
+
"118": "Writing and Literature",
|
130 |
+
"119": "pets_animals_wildlife"
|
131 |
+
},
|
132 |
+
"initializer_range": 0.02,
|
133 |
+
"label2id": {
|
134 |
+
"AI Policy and Regulations": 0,
|
135 |
+
"AI Research": 1,
|
136 |
+
"AI Startups": 2,
|
137 |
+
"Adventure": 3,
|
138 |
+
"Aerobics & Cardio": 4,
|
139 |
+
"Africa Business & Economics": 5,
|
140 |
+
"Africa politics": 6,
|
141 |
+
"Agriculture": 7,
|
142 |
+
"Art and Culture": 8,
|
143 |
+
"Asia Business & Economics": 9,
|
144 |
+
"Asia Politics": 10,
|
145 |
+
"Australia Business & Economics": 11,
|
146 |
+
"Australia Politics": 12,
|
147 |
+
"Automotive and Transportation": 13,
|
148 |
+
"Autoracing": 14,
|
149 |
+
"Banking & Finance": 15,
|
150 |
+
"Baseball": 16,
|
151 |
+
"Basketball": 17,
|
152 |
+
"Biology": 18,
|
153 |
+
"Bonds Trading & Speculation": 19,
|
154 |
+
"Boxing": 20,
|
155 |
+
"Celebrity": 21,
|
156 |
+
"Chemistry and Material Sciences": 22,
|
157 |
+
"Chess": 23,
|
158 |
+
"Civil Rights Activism": 24,
|
159 |
+
"Climate Change": 25,
|
160 |
+
"Clothes": 26,
|
161 |
+
"Computer Hardware": 27,
|
162 |
+
"Consumer & Retail": 28,
|
163 |
+
"Consumer Electronics": 29,
|
164 |
+
"Cosmetics": 30,
|
165 |
+
"Cosmology & The Universe": 31,
|
166 |
+
"Crypto Trading & Speculation": 32,
|
167 |
+
"Culture": 33,
|
168 |
+
"Discover": 34,
|
169 |
+
"Disease Research": 35,
|
170 |
+
"Drug Discoveries": 36,
|
171 |
+
"Emerging Technologies": 37,
|
172 |
+
"Energy & Natural Resources": 38,
|
173 |
+
"Environmental Science": 39,
|
174 |
+
"Epidemics & Outbreaks": 40,
|
175 |
+
"Europe Business & Economics": 41,
|
176 |
+
"Europe Politics": 42,
|
177 |
+
"Extreme Sports": 43,
|
178 |
+
"Extreme Weather and Cataclysms": 44,
|
179 |
+
"Festivals": 45,
|
180 |
+
"Food": 46,
|
181 |
+
"Football": 47,
|
182 |
+
"Forex Trading & Speculation": 48,
|
183 |
+
"Gaming & VR": 49,
|
184 |
+
"Global Health": 50,
|
185 |
+
"Global Organizations": 51,
|
186 |
+
"Golf": 52,
|
187 |
+
"Health Policy": 53,
|
188 |
+
"Hockey": 54,
|
189 |
+
"Human Rights": 55,
|
190 |
+
"India Business & Economics": 56,
|
191 |
+
"India Politics": 57,
|
192 |
+
"Inflation": 58,
|
193 |
+
"Interest Rates": 59,
|
194 |
+
"Jewelry": 60,
|
195 |
+
"Keto, Paleo, Vegan, Mediterranean": 61,
|
196 |
+
"Labor Activism": 62,
|
197 |
+
"Latin America Economy": 63,
|
198 |
+
"Latin America Politics": 64,
|
199 |
+
"Longevity": 65,
|
200 |
+
"MMA": 66,
|
201 |
+
"Medical Innovations": 67,
|
202 |
+
"Men's Health": 68,
|
203 |
+
"Mental Health Treatments": 69,
|
204 |
+
"Middle East Business & Economics": 70,
|
205 |
+
"Middle East Politics": 71,
|
206 |
+
"Movies": 72,
|
207 |
+
"Music": 73,
|
208 |
+
"Nonprofit, Charities, & Fundraising": 74,
|
209 |
+
"Nutrition Research": 75,
|
210 |
+
"Olympic Sports": 76,
|
211 |
+
"Operating Systems": 77,
|
212 |
+
"Other Sports": 78,
|
213 |
+
"Personal Finance & Financial Education": 79,
|
214 |
+
"Photographers": 80,
|
215 |
+
"Physics": 81,
|
216 |
+
"Real Estate & Housing": 82,
|
217 |
+
"Renewable Energy": 83,
|
218 |
+
"Royal Families": 84,
|
219 |
+
"SCOTUS": 85,
|
220 |
+
"Soccer": 86,
|
221 |
+
"Social Media": 87,
|
222 |
+
"Software Applications": 88,
|
223 |
+
"Space Exploration": 89,
|
224 |
+
"Space Technology": 90,
|
225 |
+
"Stocks Trading & Speculation": 91,
|
226 |
+
"Stress and Wellness": 92,
|
227 |
+
"Swimming": 93,
|
228 |
+
"Tech Giants": 94,
|
229 |
+
"Tech Industry Trends": 95,
|
230 |
+
"Tech Startups": 96,
|
231 |
+
"Television": 97,
|
232 |
+
"Tennis": 98,
|
233 |
+
"US Campaigns & Elections": 99,
|
234 |
+
"US Circuit and Appeals Courts": 100,
|
235 |
+
"US Congress": 101,
|
236 |
+
"US Crime, Violence, Terrorism & cybercrime": 102,
|
237 |
+
"US Federal Elections": 103,
|
238 |
+
"US Federal Policies": 104,
|
239 |
+
"US Involvement in Foreign Conflicts": 105,
|
240 |
+
"US Local Elections": 106,
|
241 |
+
"US Local Policies": 107,
|
242 |
+
"US Police Misconduct": 108,
|
243 |
+
"US Political Corruption": 109,
|
244 |
+
"Unemployment": 110,
|
245 |
+
"United Kingdom Business & Economics": 111,
|
246 |
+
"United Kingdom Politics": 112,
|
247 |
+
"Vaccine Development": 113,
|
248 |
+
"Video Games": 114,
|
249 |
+
"Weightlifting & Bodybuilding": 115,
|
250 |
+
"Women\u2019s Health": 116,
|
251 |
+
"Workforce / Labor": 117,
|
252 |
+
"Writing and Literature": 118,
|
253 |
+
"pets_animals_wildlife": 119
|
254 |
+
},
|
255 |
+
"max_position_embeddings": 512,
|
256 |
+
"model_type": "distilbert",
|
257 |
+
"n_heads": 12,
|
258 |
+
"n_layers": 6,
|
259 |
+
"pad_token_id": 0,
|
260 |
+
"problem_type": "single_label_classification",
|
261 |
+
"qa_dropout": 0.1,
|
262 |
+
"seq_classif_dropout": 0.2,
|
263 |
+
"sinusoidal_pos_embds": false,
|
264 |
+
"tie_weights_": true,
|
265 |
+
"torch_dtype": "float32",
|
266 |
+
"transformers_version": "4.54.0",
|
267 |
+
"vocab_size": 30522
|
268 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a891144b38b778f5697e66438d3e488814fdeafa72b47113a2781b9aadea774f
|
3 |
+
size 268195544
|