AfroLogicInsect commited on
Commit
9e45a43
·
verified ·
1 Parent(s): 037a160

Upload DistilBertForSequenceClassification

Browse files
Files changed (3) hide show
  1. README.md +199 -0
  2. config.json +268 -0
  3. model.safetensors +3 -0
README.md ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ tags: []
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+ This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
config.json ADDED
@@ -0,0 +1,268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "activation": "gelu",
3
+ "architectures": [
4
+ "DistilBertForSequenceClassification"
5
+ ],
6
+ "attention_dropout": 0.1,
7
+ "dim": 768,
8
+ "dropout": 0.1,
9
+ "hidden_dim": 3072,
10
+ "id2label": {
11
+ "0": "AI Policy and Regulations",
12
+ "1": "AI Research",
13
+ "2": "AI Startups",
14
+ "3": "Adventure",
15
+ "4": "Aerobics & Cardio",
16
+ "5": "Africa Business & Economics",
17
+ "6": "Africa politics",
18
+ "7": "Agriculture",
19
+ "8": "Art and Culture",
20
+ "9": "Asia Business & Economics",
21
+ "10": "Asia Politics",
22
+ "11": "Australia Business & Economics",
23
+ "12": "Australia Politics",
24
+ "13": "Automotive and Transportation",
25
+ "14": "Autoracing",
26
+ "15": "Banking & Finance",
27
+ "16": "Baseball",
28
+ "17": "Basketball",
29
+ "18": "Biology",
30
+ "19": "Bonds Trading & Speculation",
31
+ "20": "Boxing",
32
+ "21": "Celebrity",
33
+ "22": "Chemistry and Material Sciences",
34
+ "23": "Chess",
35
+ "24": "Civil Rights Activism",
36
+ "25": "Climate Change",
37
+ "26": "Clothes",
38
+ "27": "Computer Hardware",
39
+ "28": "Consumer & Retail",
40
+ "29": "Consumer Electronics",
41
+ "30": "Cosmetics",
42
+ "31": "Cosmology & The Universe",
43
+ "32": "Crypto Trading & Speculation",
44
+ "33": "Culture",
45
+ "34": "Discover",
46
+ "35": "Disease Research",
47
+ "36": "Drug Discoveries",
48
+ "37": "Emerging Technologies",
49
+ "38": "Energy & Natural Resources",
50
+ "39": "Environmental Science",
51
+ "40": "Epidemics & Outbreaks",
52
+ "41": "Europe Business & Economics",
53
+ "42": "Europe Politics",
54
+ "43": "Extreme Sports",
55
+ "44": "Extreme Weather and Cataclysms",
56
+ "45": "Festivals",
57
+ "46": "Food",
58
+ "47": "Football",
59
+ "48": "Forex Trading & Speculation",
60
+ "49": "Gaming & VR",
61
+ "50": "Global Health",
62
+ "51": "Global Organizations",
63
+ "52": "Golf",
64
+ "53": "Health Policy",
65
+ "54": "Hockey",
66
+ "55": "Human Rights",
67
+ "56": "India Business & Economics",
68
+ "57": "India Politics",
69
+ "58": "Inflation",
70
+ "59": "Interest Rates",
71
+ "60": "Jewelry",
72
+ "61": "Keto, Paleo, Vegan, Mediterranean",
73
+ "62": "Labor Activism",
74
+ "63": "Latin America Economy",
75
+ "64": "Latin America Politics",
76
+ "65": "Longevity",
77
+ "66": "MMA",
78
+ "67": "Medical Innovations",
79
+ "68": "Men's Health",
80
+ "69": "Mental Health Treatments",
81
+ "70": "Middle East Business & Economics",
82
+ "71": "Middle East Politics",
83
+ "72": "Movies",
84
+ "73": "Music",
85
+ "74": "Nonprofit, Charities, & Fundraising",
86
+ "75": "Nutrition Research",
87
+ "76": "Olympic Sports",
88
+ "77": "Operating Systems",
89
+ "78": "Other Sports",
90
+ "79": "Personal Finance & Financial Education",
91
+ "80": "Photographers",
92
+ "81": "Physics",
93
+ "82": "Real Estate & Housing",
94
+ "83": "Renewable Energy",
95
+ "84": "Royal Families",
96
+ "85": "SCOTUS",
97
+ "86": "Soccer",
98
+ "87": "Social Media",
99
+ "88": "Software Applications",
100
+ "89": "Space Exploration",
101
+ "90": "Space Technology",
102
+ "91": "Stocks Trading & Speculation",
103
+ "92": "Stress and Wellness",
104
+ "93": "Swimming",
105
+ "94": "Tech Giants",
106
+ "95": "Tech Industry Trends",
107
+ "96": "Tech Startups",
108
+ "97": "Television",
109
+ "98": "Tennis",
110
+ "99": "US Campaigns & Elections",
111
+ "100": "US Circuit and Appeals Courts",
112
+ "101": "US Congress",
113
+ "102": "US Crime, Violence, Terrorism & cybercrime",
114
+ "103": "US Federal Elections",
115
+ "104": "US Federal Policies",
116
+ "105": "US Involvement in Foreign Conflicts",
117
+ "106": "US Local Elections",
118
+ "107": "US Local Policies",
119
+ "108": "US Police Misconduct",
120
+ "109": "US Political Corruption",
121
+ "110": "Unemployment",
122
+ "111": "United Kingdom Business & Economics",
123
+ "112": "United Kingdom Politics",
124
+ "113": "Vaccine Development",
125
+ "114": "Video Games",
126
+ "115": "Weightlifting & Bodybuilding",
127
+ "116": "Women\u2019s Health",
128
+ "117": "Workforce / Labor",
129
+ "118": "Writing and Literature",
130
+ "119": "pets_animals_wildlife"
131
+ },
132
+ "initializer_range": 0.02,
133
+ "label2id": {
134
+ "AI Policy and Regulations": 0,
135
+ "AI Research": 1,
136
+ "AI Startups": 2,
137
+ "Adventure": 3,
138
+ "Aerobics & Cardio": 4,
139
+ "Africa Business & Economics": 5,
140
+ "Africa politics": 6,
141
+ "Agriculture": 7,
142
+ "Art and Culture": 8,
143
+ "Asia Business & Economics": 9,
144
+ "Asia Politics": 10,
145
+ "Australia Business & Economics": 11,
146
+ "Australia Politics": 12,
147
+ "Automotive and Transportation": 13,
148
+ "Autoracing": 14,
149
+ "Banking & Finance": 15,
150
+ "Baseball": 16,
151
+ "Basketball": 17,
152
+ "Biology": 18,
153
+ "Bonds Trading & Speculation": 19,
154
+ "Boxing": 20,
155
+ "Celebrity": 21,
156
+ "Chemistry and Material Sciences": 22,
157
+ "Chess": 23,
158
+ "Civil Rights Activism": 24,
159
+ "Climate Change": 25,
160
+ "Clothes": 26,
161
+ "Computer Hardware": 27,
162
+ "Consumer & Retail": 28,
163
+ "Consumer Electronics": 29,
164
+ "Cosmetics": 30,
165
+ "Cosmology & The Universe": 31,
166
+ "Crypto Trading & Speculation": 32,
167
+ "Culture": 33,
168
+ "Discover": 34,
169
+ "Disease Research": 35,
170
+ "Drug Discoveries": 36,
171
+ "Emerging Technologies": 37,
172
+ "Energy & Natural Resources": 38,
173
+ "Environmental Science": 39,
174
+ "Epidemics & Outbreaks": 40,
175
+ "Europe Business & Economics": 41,
176
+ "Europe Politics": 42,
177
+ "Extreme Sports": 43,
178
+ "Extreme Weather and Cataclysms": 44,
179
+ "Festivals": 45,
180
+ "Food": 46,
181
+ "Football": 47,
182
+ "Forex Trading & Speculation": 48,
183
+ "Gaming & VR": 49,
184
+ "Global Health": 50,
185
+ "Global Organizations": 51,
186
+ "Golf": 52,
187
+ "Health Policy": 53,
188
+ "Hockey": 54,
189
+ "Human Rights": 55,
190
+ "India Business & Economics": 56,
191
+ "India Politics": 57,
192
+ "Inflation": 58,
193
+ "Interest Rates": 59,
194
+ "Jewelry": 60,
195
+ "Keto, Paleo, Vegan, Mediterranean": 61,
196
+ "Labor Activism": 62,
197
+ "Latin America Economy": 63,
198
+ "Latin America Politics": 64,
199
+ "Longevity": 65,
200
+ "MMA": 66,
201
+ "Medical Innovations": 67,
202
+ "Men's Health": 68,
203
+ "Mental Health Treatments": 69,
204
+ "Middle East Business & Economics": 70,
205
+ "Middle East Politics": 71,
206
+ "Movies": 72,
207
+ "Music": 73,
208
+ "Nonprofit, Charities, & Fundraising": 74,
209
+ "Nutrition Research": 75,
210
+ "Olympic Sports": 76,
211
+ "Operating Systems": 77,
212
+ "Other Sports": 78,
213
+ "Personal Finance & Financial Education": 79,
214
+ "Photographers": 80,
215
+ "Physics": 81,
216
+ "Real Estate & Housing": 82,
217
+ "Renewable Energy": 83,
218
+ "Royal Families": 84,
219
+ "SCOTUS": 85,
220
+ "Soccer": 86,
221
+ "Social Media": 87,
222
+ "Software Applications": 88,
223
+ "Space Exploration": 89,
224
+ "Space Technology": 90,
225
+ "Stocks Trading & Speculation": 91,
226
+ "Stress and Wellness": 92,
227
+ "Swimming": 93,
228
+ "Tech Giants": 94,
229
+ "Tech Industry Trends": 95,
230
+ "Tech Startups": 96,
231
+ "Television": 97,
232
+ "Tennis": 98,
233
+ "US Campaigns & Elections": 99,
234
+ "US Circuit and Appeals Courts": 100,
235
+ "US Congress": 101,
236
+ "US Crime, Violence, Terrorism & cybercrime": 102,
237
+ "US Federal Elections": 103,
238
+ "US Federal Policies": 104,
239
+ "US Involvement in Foreign Conflicts": 105,
240
+ "US Local Elections": 106,
241
+ "US Local Policies": 107,
242
+ "US Police Misconduct": 108,
243
+ "US Political Corruption": 109,
244
+ "Unemployment": 110,
245
+ "United Kingdom Business & Economics": 111,
246
+ "United Kingdom Politics": 112,
247
+ "Vaccine Development": 113,
248
+ "Video Games": 114,
249
+ "Weightlifting & Bodybuilding": 115,
250
+ "Women\u2019s Health": 116,
251
+ "Workforce / Labor": 117,
252
+ "Writing and Literature": 118,
253
+ "pets_animals_wildlife": 119
254
+ },
255
+ "max_position_embeddings": 512,
256
+ "model_type": "distilbert",
257
+ "n_heads": 12,
258
+ "n_layers": 6,
259
+ "pad_token_id": 0,
260
+ "problem_type": "single_label_classification",
261
+ "qa_dropout": 0.1,
262
+ "seq_classif_dropout": 0.2,
263
+ "sinusoidal_pos_embds": false,
264
+ "tie_weights_": true,
265
+ "torch_dtype": "float32",
266
+ "transformers_version": "4.54.0",
267
+ "vocab_size": 30522
268
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a891144b38b778f5697e66438d3e488814fdeafa72b47113a2781b9aadea774f
3
+ size 268195544