File size: 9,391 Bytes
57e9a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# MIT License
#
# Copyright (c) 2025 ALMUSAWIY Halliru
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

# === V3 Modular Brain Agent with Plasticity - Block 1 ===

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
from torch.utils.data import DataLoader, Dataset
from collections import deque
from torchvision import datasets, transforms

# === Plastic Synapse Mechanisms ===
class PlasticLinear(nn.Module):
    def __init__(self, in_features, out_features, plasticity_type="hebbian", learning_rate=0.01):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.randn(out_features, in_features) * 0.1)
        self.bias = nn.Parameter(torch.zeros(out_features))
        self.plasticity_type = plasticity_type
        self.eta = learning_rate
        self.trace = torch.zeros(out_features, in_features)
        self.register_buffer('prev_y', torch.zeros(out_features))

    def forward(self, x):
        y = F.linear(x, self.weight, self.bias)
        if self.training:
            x_detached = x.detach()
            y_detached = y.detach()
            if self.plasticity_type == "hebbian":
                hebb = torch.einsum('bi,bj->ij', y_detached, x_detached) / x.size(0)
                self.trace = (1 - self.eta) * self.trace + self.eta * hebb
                with torch.no_grad():
                    self.weight += self.trace
            elif self.plasticity_type == "stdp":
                dy = y_detached - self.prev_y
                stdp = torch.einsum('bi,bj->ij', dy, x_detached) / x.size(0)
                self.trace = (1 - self.eta) * self.trace + self.eta * stdp
                with torch.no_grad():
                    self.weight += self.trace
                self.prev_y = y_detached.clone()
        return y

# === Spiking Surrogate Functions and Base Neurons ===
class SpikeFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, input):
        ctx.save_for_backward(input)
        return (input > 0).float()

    @staticmethod
    def backward(ctx, grad_output):
        input, = ctx.saved_tensors
        return grad_output * (abs(input) < 1).float()

spike_fn = SpikeFunction.apply

class LIFNeuron(nn.Module):
    def __init__(self, tau=2.0):
        super().__init__()
        self.tau = tau
        self.mem = 0

    def forward(self, x):
        decay = torch.exp(torch.tensor(-1.0 / self.tau))
        self.mem = self.mem * decay + x
        out = spike_fn(self.mem - 1.0)
        self.mem = self.mem * (1.0 - out.detach())
        return out

# === Adaptive LIF Neuron ===
class AdaptiveLIF(nn.Module):
    def __init__(self, size, tau=2.0, beta=0.2):
        super().__init__()
        self.size = size
        self.tau = tau
        self.beta = beta
        self.mem = torch.zeros(size)
        self.thresh = torch.ones(size)

    def forward(self, x):
        decay = torch.exp(torch.tensor(-1.0 / self.tau))
        self.mem = self.mem * decay + x
        out = spike_fn(self.mem - self.thresh)
        self.thresh = self.thresh + self.beta * out
        self.mem = self.mem * (1.0 - out.detach())
        return out

# === Relay Layer with Attention ===
class RelayLayer(nn.Module):
    def __init__(self, dim, heads=4):
        super().__init__()
        self.attn = nn.MultiheadAttention(embed_dim=dim, num_heads=heads, batch_first=True)
        self.lif = LIFNeuron()

    def forward(self, x):
        attn_out, _ = self.attn(x, x, x)
        return self.lif(attn_out)

# === Working Memory ===
class WorkingMemory(nn.Module):
    def __init__(self, input_dim, hidden_dim):
        super().__init__()
        self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)

    def forward(self, x):
        out, _ = self.lstm(x)
        return out[:, -1]

# === Place Cell Grid ===
class PlaceGrid(nn.Module):
    def __init__(self, grid_size=10, embedding_dim=64):
        super().__init__()
        self.embedding = nn.Embedding(grid_size**2, embedding_dim)

    def forward(self, index):
        return self.embedding(index)

# === Mirror Comparator ===
class MirrorComparator(nn.Module):
    def __init__(self, dim):
        super().__init__()
        self.cos = nn.CosineSimilarity(dim=1)

    def forward(self, x1, x2):
        return self.cos(x1, x2).unsqueeze(1)

# === Neuroendocrine Module ===
class NeuroendocrineModulator(nn.Module):
    def __init__(self, input_dim, hidden_dim):
        super().__init__()
        self.lstm = nn.LSTM(input_dim, hidden_dim, batch_first=True)

    def forward(self, x):
        out, _ = self.lstm(x)
        return out[:, -1]

# === Autonomic Feedback Module ===
class AutonomicFeedback(nn.Module):
    def __init__(self, input_dim):
        super().__init__()
        self.feedback = nn.Linear(input_dim, input_dim)

    def forward(self, x):
        return torch.tanh(self.feedback(x))

# === Replay Buffer ===
class ReplayBuffer:
    def __init__(self, capacity=1000):
        self.buffer = deque(maxlen=capacity)

    def add(self, inputs, labels, task):
        self.buffer.append((inputs, labels, task))

    def sample(self, batch_size):
        indices = random.sample(range(len(self.buffer)), batch_size)
        batch = [self.buffer[i] for i in indices]
        inputs, labels, tasks = zip(*batch)
        return inputs, labels, tasks

# === Full Modular Brain Agent with Plasticity ===
class ModularBrainAgent(nn.Module):
    def __init__(self, input_dims, hidden_dim, output_dims):
        super().__init__()
        self.vision_encoder = nn.Linear(input_dims['vision'], hidden_dim)
        self.language_encoder = nn.Linear(input_dims['language'], hidden_dim)
        self.numeric_encoder = nn.Linear(input_dims['numeric'], hidden_dim)

        # Plastic synapses (Hebbian and STDP)
        self.connect_sensory_to_relay = PlasticLinear(hidden_dim * 3, hidden_dim, plasticity_type='hebbian')
        self.relay_layer = RelayLayer(hidden_dim)
        self.connect_relay_to_inter = PlasticLinear(hidden_dim, hidden_dim, plasticity_type='stdp')

        self.interneuron = AdaptiveLIF(hidden_dim)
        self.memory = WorkingMemory(hidden_dim, hidden_dim)
        self.place = PlaceGrid(grid_size=10, embedding_dim=hidden_dim)
        self.comparator = MirrorComparator(hidden_dim)
        self.emotion = NeuroendocrineModulator(hidden_dim, hidden_dim)
        self.feedback = AutonomicFeedback(hidden_dim)

        self.task_heads = nn.ModuleDict({
            task: nn.Linear(hidden_dim, out_dim)
            for task, out_dim in output_dims.items()
        })

        self.replay = ReplayBuffer()

    def forward(self, inputs, task, position_idx=None):
        v = self.vision_encoder(inputs['vision'])
        l = self.language_encoder(inputs['language'])
        n = self.numeric_encoder(inputs['numeric'])

        sensory_cat = torch.cat([v, l, n], dim=-1)
        z = self.connect_sensory_to_relay(sensory_cat)

        z = self.relay_layer(z.unsqueeze(1)).squeeze(1)
        z = self.connect_relay_to_inter(z)
        z = self.interneuron(z)

        m = self.memory(z.unsqueeze(1))
        p = self.place(position_idx if position_idx is not None else torch.tensor([0]))
        e = self.emotion(z.unsqueeze(1))
        f = self.feedback(z)

        combined = z + m + p + e + f
        out = self.task_heads[task](combined)
        return out

    def remember(self, inputs, labels, task):
        self.replay.add(inputs, labels, task)

# === Main Test Block ===
if __name__ == "__main__":
    input_dims = {'vision': 32, 'language': 16, 'numeric': 8}
    output_dims = {'classification': 5, 'regression': 1, 'binary': 1}
    agent = ModularBrainAgent(input_dims, hidden_dim=64, output_dims=output_dims)

    tasks = list(output_dims.keys())

    for step in range(250):
        task = random.choice(tasks)
        inputs = {
            'vision': torch.randn(1, 32),
            'language': torch.randn(1, 16),
            'numeric': torch.randn(1, 8)
        }
        labels = torch.randint(0, output_dims[task], (1,)) if task == 'classification' else torch.randn(1, output_dims[task])
        output = agent(inputs, task)
        loss = F.cross_entropy(output, labels) if task == 'classification' else F.mse_loss(output, labels)
        print(f"Step {step:02d} | Task: {task:13s} | Loss: {loss.item():.4f}")