File size: 19,178 Bytes
c0af20c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import copy
import random
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    DPMSolverMultistepScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    StableDiffusionXLInpaintPipeline,
    UNet2DConditionModel,
    UniPCMultistepScheduler,
)
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu

from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin


enable_full_determinism()


class StableDiffusionXLInpaintPipelineFastTests(PipelineLatentTesterMixin, PipelineTesterMixin, unittest.TestCase):
    pipeline_class = StableDiffusionXLInpaintPipeline
    params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
    batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
    image_params = frozenset([])
    # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
    image_latents_params = frozenset([])

    def get_dummy_components(self, skip_first_text_encoder=False):
        torch.manual_seed(0)
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            # SD2-specific config below
            attention_head_dim=(2, 4),
            use_linear_projection=True,
            addition_embed_type="text_time",
            addition_time_embed_dim=8,
            transformer_layers_per_block=(1, 2),
            projection_class_embeddings_input_dim=80,  # 6 * 8 + 32
            cross_attention_dim=64 if not skip_first_text_encoder else 32,
        )
        scheduler = EulerDiscreteScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            steps_offset=1,
            beta_schedule="scaled_linear",
            timestep_spacing="leading",
        )
        torch.manual_seed(0)
        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
            sample_size=128,
        )
        torch.manual_seed(0)
        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            # SD2-specific config below
            hidden_act="gelu",
            projection_dim=32,
        )
        text_encoder = CLIPTextModel(text_encoder_config)
        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config)
        tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder if not skip_first_text_encoder else None,
            "tokenizer": tokenizer if not skip_first_text_encoder else None,
            "text_encoder_2": text_encoder_2,
            "tokenizer_2": tokenizer_2,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched
        image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
        image = image.cpu().permute(0, 2, 3, 1)[0]
        init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
        # create mask
        image[8:, 8:, :] = 255
        mask_image = Image.fromarray(np.uint8(image)).convert("L").resize((64, 64))

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device=device).manual_seed(seed)
        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "image": init_image,
            "mask_image": mask_image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 6.0,
            "output_type": "numpy",
        }
        return inputs

    def test_stable_diffusion_xl_inpaint_euler(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.6965, 0.5584, 0.5693, 0.5739, 0.6092, 0.6620, 0.5902, 0.5612, 0.5319])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_attention_slicing_forward_pass(self):
        super().test_attention_slicing_forward_pass(expected_max_diff=3e-3)

    def test_inference_batch_single_identical(self):
        super().test_inference_batch_single_identical(expected_max_diff=3e-3)

    # TODO(Patrick, Sayak) - skip for now as this requires more refiner tests
    def test_save_load_optional_components(self):
        pass

    def test_stable_diffusion_xl_inpaint_negative_prompt_embeds(self):
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLInpaintPipeline(**components)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe = sd_pipe.to(torch_device)
        sd_pipe.set_progress_bar_config(disable=None)

        # forward without prompt embeds
        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        inputs["negative_prompt"] = negative_prompt
        inputs["prompt"] = 3 * [inputs["prompt"]]

        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        # forward with prompt embeds
        inputs = self.get_dummy_inputs(torch_device)
        negative_prompt = 3 * ["this is a negative prompt"]
        prompt = 3 * [inputs.pop("prompt")]

        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = sd_pipe.encode_prompt(prompt, negative_prompt=negative_prompt)

        output = sd_pipe(
            **inputs,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
        )
        image_slice_2 = output.images[0, -3:, -3:, -1]

        # make sure that it's equal
        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

    @require_torch_gpu
    def test_stable_diffusion_xl_offloads(self):
        pipes = []
        components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLInpaintPipeline(**components)
        sd_pipe.enable_model_cpu_offload()
        pipes.append(sd_pipe)

        components = self.get_dummy_components()
        sd_pipe = StableDiffusionXLInpaintPipeline(**components)
        sd_pipe.enable_sequential_cpu_offload()
        pipes.append(sd_pipe)

        image_slices = []
        for pipe in pipes:
            pipe.unet.set_default_attn_processor()

            inputs = self.get_dummy_inputs(torch_device)
            image = pipe(**inputs).images

            image_slices.append(image[0, -3:, -3:, -1].flatten())

        assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
        assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3

    def test_stable_diffusion_xl_refiner(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components(skip_first_text_encoder=True)

        sd_pipe = self.pipeline_class(**components)
        sd_pipe = sd_pipe.to(device)
        sd_pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        image = sd_pipe(**inputs).images
        image_slice = image[0, -3:, -3:, -1]

        print(torch.from_numpy(image_slice).flatten())
        assert image.shape == (1, 64, 64, 3)

        expected_slice = np.array([0.9106, 0.6563, 0.6766, 0.6537, 0.6709, 0.7367, 0.6537, 0.5937, 0.5418])

        assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2

    def test_stable_diffusion_two_xl_mixture_of_denoiser(self):
        components = self.get_dummy_components()
        pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
        pipe_1.unet.set_default_attn_processor()
        pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
        pipe_2.unet.set_default_attn_processor()

        def assert_run_mixture(
            num_steps, split, scheduler_cls_orig, num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps
        ):
            inputs = self.get_dummy_inputs(torch_device)
            inputs["num_inference_steps"] = num_steps

            class scheduler_cls(scheduler_cls_orig):
                pass

            pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
            pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)

            # Let's retrieve the number of timesteps we want to use
            pipe_1.scheduler.set_timesteps(num_steps)
            expected_steps = pipe_1.scheduler.timesteps.tolist()

            split_ts = num_train_timesteps - int(round(num_train_timesteps * split))
            expected_steps_1 = expected_steps[:split_ts]
            expected_steps_2 = expected_steps[split_ts:]

            expected_steps_1 = list(filter(lambda ts: ts >= split_ts, expected_steps))
            expected_steps_2 = list(filter(lambda ts: ts < split_ts, expected_steps))

            # now we monkey patch step `done_steps`
            # list into the step function for testing
            done_steps = []
            old_step = copy.copy(scheduler_cls.step)

            def new_step(self, *args, **kwargs):
                done_steps.append(args[1].cpu().item())  # args[1] is always the passed `t`
                return old_step(self, *args, **kwargs)

            scheduler_cls.step = new_step

            inputs_1 = {**inputs, **{"denoising_end": split, "output_type": "latent"}}
            latents = pipe_1(**inputs_1).images[0]

            assert expected_steps_1 == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"

            inputs_2 = {**inputs, **{"denoising_start": split, "image": latents}}
            pipe_2(**inputs_2).images[0]

            assert expected_steps_2 == done_steps[len(expected_steps_1) :]
            assert expected_steps == done_steps, f"Failure with {scheduler_cls.__name__} and {num_steps} and {split}"

        for steps in [5, 8, 20]:
            for split in [0.33, 0.49, 0.71]:
                for scheduler_cls in [
                    DDIMScheduler,
                    EulerDiscreteScheduler,
                    DPMSolverMultistepScheduler,
                    UniPCMultistepScheduler,
                    HeunDiscreteScheduler,
                ]:
                    assert_run_mixture(steps, split, scheduler_cls)

    def test_stable_diffusion_three_xl_mixture_of_denoiser(self):
        components = self.get_dummy_components()
        pipe_1 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
        pipe_1.unet.set_default_attn_processor()
        pipe_2 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
        pipe_2.unet.set_default_attn_processor()
        pipe_3 = StableDiffusionXLInpaintPipeline(**components).to(torch_device)
        pipe_3.unet.set_default_attn_processor()

        def assert_run_mixture(
            num_steps,
            split_1,
            split_2,
            scheduler_cls_orig,
            num_train_timesteps=pipe_1.scheduler.config.num_train_timesteps,
        ):
            inputs = self.get_dummy_inputs(torch_device)
            inputs["num_inference_steps"] = num_steps

            class scheduler_cls(scheduler_cls_orig):
                pass

            pipe_1.scheduler = scheduler_cls.from_config(pipe_1.scheduler.config)
            pipe_2.scheduler = scheduler_cls.from_config(pipe_2.scheduler.config)
            pipe_3.scheduler = scheduler_cls.from_config(pipe_3.scheduler.config)

            # Let's retrieve the number of timesteps we want to use
            pipe_1.scheduler.set_timesteps(num_steps)
            expected_steps = pipe_1.scheduler.timesteps.tolist()

            split_1_ts = num_train_timesteps - int(round(num_train_timesteps * split_1))
            split_2_ts = num_train_timesteps - int(round(num_train_timesteps * split_2))
            expected_steps_1 = expected_steps[:split_1_ts]
            expected_steps_2 = expected_steps[split_1_ts:split_2_ts]
            expected_steps_3 = expected_steps[split_2_ts:]

            expected_steps_1 = list(filter(lambda ts: ts >= split_1_ts, expected_steps))
            expected_steps_2 = list(filter(lambda ts: ts >= split_2_ts and ts < split_1_ts, expected_steps))
            expected_steps_3 = list(filter(lambda ts: ts < split_2_ts, expected_steps))

            # now we monkey patch step `done_steps`
            # list into the step function for testing
            done_steps = []
            old_step = copy.copy(scheduler_cls.step)

            def new_step(self, *args, **kwargs):
                done_steps.append(args[1].cpu().item())  # args[1] is always the passed `t`
                return old_step(self, *args, **kwargs)

            scheduler_cls.step = new_step

            inputs_1 = {**inputs, **{"denoising_end": split_1, "output_type": "latent"}}
            latents = pipe_1(**inputs_1).images[0]

            assert (
                expected_steps_1 == done_steps
            ), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"

            inputs_2 = {
                **inputs,
                **{"denoising_start": split_1, "denoising_end": split_2, "image": latents, "output_type": "latent"},
            }
            pipe_2(**inputs_2).images[0]

            assert expected_steps_2 == done_steps[len(expected_steps_1) :]

            inputs_3 = {**inputs, **{"denoising_start": split_2, "image": latents}}
            pipe_3(**inputs_3).images[0]

            assert expected_steps_3 == done_steps[len(expected_steps_1) + len(expected_steps_2) :]
            assert (
                expected_steps == done_steps
            ), f"Failure with {scheduler_cls.__name__} and {num_steps} and {split_1} and {split_2}"

        for steps in [7, 11, 20]:
            for split_1, split_2 in zip([0.19, 0.32], [0.81, 0.68]):
                for scheduler_cls in [
                    DDIMScheduler,
                    EulerDiscreteScheduler,
                    DPMSolverMultistepScheduler,
                    UniPCMultistepScheduler,
                    HeunDiscreteScheduler,
                ]:
                    assert_run_mixture(steps, split_1, split_2, scheduler_cls)

    def test_stable_diffusion_xl_multi_prompts(self):
        components = self.get_dummy_components()
        sd_pipe = self.pipeline_class(**components).to(torch_device)

        # forward with single prompt
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        # forward with same prompt duplicated
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        inputs["prompt_2"] = inputs["prompt"]
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        # ensure the results are equal
        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

        # forward with different prompt
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        inputs["prompt_2"] = "different prompt"
        output = sd_pipe(**inputs)
        image_slice_3 = output.images[0, -3:, -3:, -1]

        # ensure the results are not equal
        assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4

        # manually set a negative_prompt
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        inputs["negative_prompt"] = "negative prompt"
        output = sd_pipe(**inputs)
        image_slice_1 = output.images[0, -3:, -3:, -1]

        # forward with same negative_prompt duplicated
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        inputs["negative_prompt"] = "negative prompt"
        inputs["negative_prompt_2"] = inputs["negative_prompt"]
        output = sd_pipe(**inputs)
        image_slice_2 = output.images[0, -3:, -3:, -1]

        # ensure the results are equal
        assert np.abs(image_slice_1.flatten() - image_slice_2.flatten()).max() < 1e-4

        # forward with different negative_prompt
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 5
        inputs["negative_prompt"] = "negative prompt"
        inputs["negative_prompt_2"] = "different negative prompt"
        output = sd_pipe(**inputs)
        image_slice_3 = output.images[0, -3:, -3:, -1]

        # ensure the results are not equal
        assert np.abs(image_slice_1.flatten() - image_slice_3.flatten()).max() > 1e-4