AnonRes commited on
Commit
f82b742
Β·
verified Β·
1 Parent(s): 2bafab6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +16 -16
README.md CHANGED
@@ -18,35 +18,35 @@ tags:
18
 
19
  ![OpenMind](https://huggingface.co/datasets/AnonRes/OpenMind/resolve/main/assets/OpenMindDataset.png)
20
 
21
- ## πŸ” Overview
22
 
23
  This repository hosts pre-trained checkpoints from the **OpenMind** benchmark:
24
- πŸ“„ **"An OpenMind for 3D medical vision self-supervised learning"**
25
  ([arXiv:2412.17041](https://arxiv.org/abs/2412.17041)) β€” the first extensive benchmark study for **self-supervised learning (SSL)** on **3D medical imaging** data.
26
 
27
- The models were pre-trained using various SSL methods on the [OpenMind Dataset](https://huggingface.co/datasets/AnonRes/OpenMind), a large-scale, standardized collection of public brain MRI datasets.
28
 
29
- **These models are not recommended to be used as-is.** Instead we recommend using the downstream fine-tuning pipelines for **segmentation** and **classification**, available in the [adaptation repository](https://github.com/TaWald/nnUNet).
30
- *While direct download is possible, we recommend using the auto-download of the respective fine-tuning repositories.*
31
 
32
  ---
33
 
34
- ## 🧠 Model Variants
35
 
36
  We release SSL checkpoints for two backbone architectures:
37
 
38
- - **ResEnc-L**: A CNN-based encoder [[link1](https://arxiv.org/abs/2410.23132), [link2](https://arxiv.org/abs/2404.09556)]
39
  - **Primus-M**: A transformer-based encoder [[Primus paper](https://arxiv.org/abs/2503.01835)]
40
 
41
- Each encoder has been pre-trained using the following SSL techniques:
42
 
43
  | Method | Description |
44
  |---------------|-------------|
45
- | [Volume Contrastive (VoCo)](https://arxiv.org/abs/2402.17300) | Global contrastive learning in 3D volumes |
46
- | [VolumeFusion (VF)](https://arxiv.org/abs/2306.16925) | Spatial fusion-based SSL |
47
- | [Models Genesis (MG)](https://www.sciencedirect.com/science/article/pii/S1361841520302048) | Classic 3D self-reconstruction |
48
- | [Masked Autoencoders (MAE)](https://openaccess.thecvf.com/content/CVPR2022/html/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper) | Patch masking and reconstruction |
49
- | [Spark 3D (S3D)](https://arxiv.org/abs/2410.23132) | 3D adaptation of Spark framework |
50
- | [SimMIM](https://openaccess.thecvf.com/content/CVPR2022/html/Xie_SimMIM_A_Simple_Framework_for_Masked_Image_Modeling_CVPR_2022_paper.html) | Simple masked reconstruction |
51
- | [SwinUNETR SSL](https://arxiv.org/abs/2111.14791) | Transformer-based pre-training |
52
- | [SimCLR](https://arxiv.org/abs/2002.05709) | Contrastive learning baseline |
 
18
 
19
  ![OpenMind](https://huggingface.co/datasets/AnonRes/OpenMind/resolve/main/assets/OpenMindDataset.png)
20
 
21
+ ## Overview
22
 
23
  This repository hosts pre-trained checkpoints from the **OpenMind** benchmark:
24
+ πŸ“„ **An OpenMind for 3D medical vision self-supervised learning** (Wald, T., Ulrich, C., Suprijadi, J., Ziegler, S., Nohel, M., Peretzke, R., ... & Maier-Hein, K. H. (2024).)
25
  ([arXiv:2412.17041](https://arxiv.org/abs/2412.17041)) β€” the first extensive benchmark study for **self-supervised learning (SSL)** on **3D medical imaging** data.
26
 
27
+ Each model was pre-trained using a particular SSL method on the [OpenMind Dataset](https://huggingface.co/datasets/AnonRes/OpenMind), a large-scale, standardized collection of public brain MRI datasets.
28
 
29
+ **These models are not recommended to be used as-is for feature extraction.** Instead we recommend using the downstream fine-tuning frameworks for **segmentation** and **classification** adaptation, available in the [adaptation repository](https://github.com/TaWald/nnUNet).
30
+ *While manual download is possible, we recommend using the auto-download feature of the fine-tuning repository by providing the repository URL on Hugging Face instead of a local checkpoint path.*
31
 
32
  ---
33
 
34
+ ## Model Variants
35
 
36
  We release SSL checkpoints for two backbone architectures:
37
 
38
+ - **ResEnc-L**: A CNN-based encoder [[a](https://arxiv.org/abs/2410.23132), [b](https://arxiv.org/abs/2404.09556)]
39
  - **Primus-M**: A transformer-based encoder [[Primus paper](https://arxiv.org/abs/2503.01835)]
40
 
41
+ Each encoder has been pre-trained using one of the following SSL techniques:
42
 
43
  | Method | Description |
44
  |---------------|-------------|
45
+ | [Volume Contrastive (VoCo)](https://arxiv.org/abs/2402.17300) | Contrastive pretraining method for 3D volumes |
46
+ | [VolumeFusion (VF)](https://arxiv.org/abs/2306.16925) | Spatial volume fusion-based segmentation SSL method |
47
+ | [Models Genesis (MG)](https://www.sciencedirect.com/science/article/pii/S1361841520302048) | Reconstruction and denoising based pretraining method |
48
+ | [Masked Autoencoders (MAE)](https://openaccess.thecvf.com/content/CVPR2022/html/He_Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_2022_paper) | Default reconstruction based pretraining method |
49
+ | [Spark 3D (S3D)](https://arxiv.org/abs/2410.23132) | Sparse reconstruction based pretraining mehtod (CNN only) |
50
+ | [SimMIM](https://openaccess.thecvf.com/content/CVPR2022/html/Xie_SimMIM_A_Simple_Framework_for_Masked_Image_Modeling_CVPR_2022_paper.html) | Simple masked reconstruction based pretraining method (TR only) |
51
+ | [SwinUNETR SSL](https://arxiv.org/abs/2111.14791) | Rotation, Contrastive and Reconstruction based pre-training method. |
52
+ | [SimCLR](https://arxiv.org/abs/2002.05709) | Transfer of 2D Contrastive learning baseline method to 3D |