Upload inference.py
Browse files- inference.py +57 -0
inference.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from tensorflow.keras.models import load_model # type: ignore
|
2 |
+
from tensorflow.keras.preprocessing import image as keras_image # type: ignore
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import io
|
6 |
+
import os
|
7 |
+
import gdown
|
8 |
+
|
9 |
+
# === Path model lokal ===
|
10 |
+
model_path = 'saved_model_palm_disease.keras'
|
11 |
+
|
12 |
+
# === Unduh model dari Google Drive jika belum ada ===
|
13 |
+
if not os.path.exists(model_path):
|
14 |
+
url = 'https://drive.google.com/uc?id=1g-QPUIsySVm1oBl0KXpKKlxe7x_JPe7B'
|
15 |
+
gdown.download(url, model_path, quiet=False)
|
16 |
+
|
17 |
+
# === Load model hanya sekali ===
|
18 |
+
model = load_model(model_path)
|
19 |
+
|
20 |
+
# === Label urutan class_name (dari training) ===
|
21 |
+
labels = ['Boron Excess', 'Ganoderma', 'Healthy', 'Scale insect']
|
22 |
+
|
23 |
+
# === Fungsi preprocessing gambar ===
|
24 |
+
def preprocess_image(image_bytes):
|
25 |
+
img = Image.open(io.BytesIO(image_bytes)).convert("RGB").resize((224, 224))
|
26 |
+
img_array = keras_image.img_to_array(img) / 255.0
|
27 |
+
img_array = np.expand_dims(img_array, axis=0)
|
28 |
+
return img_array
|
29 |
+
|
30 |
+
# === Fungsi prediksi utama ===
|
31 |
+
def predict_image(image_bytes):
|
32 |
+
img_array = preprocess_image(image_bytes)
|
33 |
+
predictions = model.predict(img_array)
|
34 |
+
class_index = int(np.argmax(predictions))
|
35 |
+
confidence = float(np.max(predictions))
|
36 |
+
return {
|
37 |
+
'class': labels[class_index],
|
38 |
+
'confidence': confidence
|
39 |
+
}
|
40 |
+
|
41 |
+
# === Fungsi handler yang dipanggil Hugging Face API ===
|
42 |
+
def handler(inputs):
|
43 |
+
try:
|
44 |
+
# Input berupa base64 atau byte dari gambar
|
45 |
+
image_bytes = inputs['inputs']
|
46 |
+
|
47 |
+
# Jika data berupa string base64, ubah ke byte
|
48 |
+
if isinstance(image_bytes, str):
|
49 |
+
import base64
|
50 |
+
image_bytes = base64.b64decode(image_bytes)
|
51 |
+
|
52 |
+
result = predict_image(image_bytes)
|
53 |
+
return result
|
54 |
+
|
55 |
+
except Exception as e:
|
56 |
+
return {"error": str(e)}
|
57 |
+
|