Commit
·
a5b41c2
1
Parent(s):
b9c3b2f
Upload infer_uvr5.py
Browse files- infer_uvr5.py +363 -0
infer_uvr5.py
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os, sys, torch, warnings, pdb
|
| 2 |
+
|
| 3 |
+
now_dir = os.getcwd()
|
| 4 |
+
sys.path.append(now_dir)
|
| 5 |
+
from json import load as ll
|
| 6 |
+
|
| 7 |
+
warnings.filterwarnings("ignore")
|
| 8 |
+
import librosa
|
| 9 |
+
import importlib
|
| 10 |
+
import numpy as np
|
| 11 |
+
import hashlib, math
|
| 12 |
+
from tqdm import tqdm
|
| 13 |
+
from lib.uvr5_pack.lib_v5 import spec_utils
|
| 14 |
+
from lib.uvr5_pack.utils import _get_name_params, inference
|
| 15 |
+
from lib.uvr5_pack.lib_v5.model_param_init import ModelParameters
|
| 16 |
+
import soundfile as sf
|
| 17 |
+
from lib.uvr5_pack.lib_v5.nets_new import CascadedNet
|
| 18 |
+
from lib.uvr5_pack.lib_v5 import nets_61968KB as nets
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class _audio_pre_:
|
| 22 |
+
def __init__(self, agg, model_path, device, is_half):
|
| 23 |
+
self.model_path = model_path
|
| 24 |
+
self.device = device
|
| 25 |
+
self.data = {
|
| 26 |
+
# Processing Options
|
| 27 |
+
"postprocess": False,
|
| 28 |
+
"tta": False,
|
| 29 |
+
# Constants
|
| 30 |
+
"window_size": 512,
|
| 31 |
+
"agg": agg,
|
| 32 |
+
"high_end_process": "mirroring",
|
| 33 |
+
}
|
| 34 |
+
mp = ModelParameters("lib/uvr5_pack/lib_v5/modelparams/4band_v2.json")
|
| 35 |
+
model = nets.CascadedASPPNet(mp.param["bins"] * 2)
|
| 36 |
+
cpk = torch.load(model_path, map_location="cpu")
|
| 37 |
+
model.load_state_dict(cpk)
|
| 38 |
+
model.eval()
|
| 39 |
+
if is_half:
|
| 40 |
+
model = model.half().to(device)
|
| 41 |
+
else:
|
| 42 |
+
model = model.to(device)
|
| 43 |
+
|
| 44 |
+
self.mp = mp
|
| 45 |
+
self.model = model
|
| 46 |
+
|
| 47 |
+
def _path_audio_(self, music_file, ins_root=None, vocal_root=None, format="flac"):
|
| 48 |
+
if ins_root is None and vocal_root is None:
|
| 49 |
+
return "No save root."
|
| 50 |
+
name = os.path.basename(music_file)
|
| 51 |
+
if ins_root is not None:
|
| 52 |
+
os.makedirs(ins_root, exist_ok=True)
|
| 53 |
+
if vocal_root is not None:
|
| 54 |
+
os.makedirs(vocal_root, exist_ok=True)
|
| 55 |
+
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
| 56 |
+
bands_n = len(self.mp.param["band"])
|
| 57 |
+
# print(bands_n)
|
| 58 |
+
for d in range(bands_n, 0, -1):
|
| 59 |
+
bp = self.mp.param["band"][d]
|
| 60 |
+
if d == bands_n: # high-end band
|
| 61 |
+
(
|
| 62 |
+
X_wave[d],
|
| 63 |
+
_,
|
| 64 |
+
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
| 65 |
+
music_file,
|
| 66 |
+
bp["sr"],
|
| 67 |
+
False,
|
| 68 |
+
dtype=np.float32,
|
| 69 |
+
res_type=bp["res_type"],
|
| 70 |
+
)
|
| 71 |
+
if X_wave[d].ndim == 1:
|
| 72 |
+
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
| 73 |
+
else: # lower bands
|
| 74 |
+
X_wave[d] = librosa.core.resample(
|
| 75 |
+
X_wave[d + 1],
|
| 76 |
+
self.mp.param["band"][d + 1]["sr"],
|
| 77 |
+
bp["sr"],
|
| 78 |
+
res_type=bp["res_type"],
|
| 79 |
+
)
|
| 80 |
+
# Stft of wave source
|
| 81 |
+
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
| 82 |
+
X_wave[d],
|
| 83 |
+
bp["hl"],
|
| 84 |
+
bp["n_fft"],
|
| 85 |
+
self.mp.param["mid_side"],
|
| 86 |
+
self.mp.param["mid_side_b2"],
|
| 87 |
+
self.mp.param["reverse"],
|
| 88 |
+
)
|
| 89 |
+
# pdb.set_trace()
|
| 90 |
+
if d == bands_n and self.data["high_end_process"] != "none":
|
| 91 |
+
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
| 92 |
+
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
| 93 |
+
)
|
| 94 |
+
input_high_end = X_spec_s[d][
|
| 95 |
+
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
| 99 |
+
aggresive_set = float(self.data["agg"] / 100)
|
| 100 |
+
aggressiveness = {
|
| 101 |
+
"value": aggresive_set,
|
| 102 |
+
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
| 103 |
+
}
|
| 104 |
+
with torch.no_grad():
|
| 105 |
+
pred, X_mag, X_phase = inference(
|
| 106 |
+
X_spec_m, self.device, self.model, aggressiveness, self.data
|
| 107 |
+
)
|
| 108 |
+
# Postprocess
|
| 109 |
+
if self.data["postprocess"]:
|
| 110 |
+
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
| 111 |
+
pred = spec_utils.mask_silence(pred, pred_inv)
|
| 112 |
+
y_spec_m = pred * X_phase
|
| 113 |
+
v_spec_m = X_spec_m - y_spec_m
|
| 114 |
+
|
| 115 |
+
if ins_root is not None:
|
| 116 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
| 117 |
+
input_high_end_ = spec_utils.mirroring(
|
| 118 |
+
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
| 119 |
+
)
|
| 120 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
| 121 |
+
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
| 122 |
+
)
|
| 123 |
+
else:
|
| 124 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
| 125 |
+
print("%s instruments done" % name)
|
| 126 |
+
if format in ["wav", "flac"]:
|
| 127 |
+
sf.write(
|
| 128 |
+
os.path.join(
|
| 129 |
+
ins_root,
|
| 130 |
+
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
|
| 131 |
+
),
|
| 132 |
+
(np.array(wav_instrument) * 32768).astype("int16"),
|
| 133 |
+
self.mp.param["sr"],
|
| 134 |
+
) #
|
| 135 |
+
else:
|
| 136 |
+
path = os.path.join(
|
| 137 |
+
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
|
| 138 |
+
)
|
| 139 |
+
sf.write(
|
| 140 |
+
path,
|
| 141 |
+
(np.array(wav_instrument) * 32768).astype("int16"),
|
| 142 |
+
self.mp.param["sr"],
|
| 143 |
+
)
|
| 144 |
+
if os.path.exists(path):
|
| 145 |
+
os.system(
|
| 146 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 147 |
+
% (path, path[:-4] + ".%s" % format)
|
| 148 |
+
)
|
| 149 |
+
if vocal_root is not None:
|
| 150 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
| 151 |
+
input_high_end_ = spec_utils.mirroring(
|
| 152 |
+
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
| 153 |
+
)
|
| 154 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
| 155 |
+
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
| 156 |
+
)
|
| 157 |
+
else:
|
| 158 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
| 159 |
+
print("%s vocals done" % name)
|
| 160 |
+
if format in ["wav", "flac"]:
|
| 161 |
+
sf.write(
|
| 162 |
+
os.path.join(
|
| 163 |
+
vocal_root,
|
| 164 |
+
"vocal_{}_{}.{}".format(name, self.data["agg"], format),
|
| 165 |
+
),
|
| 166 |
+
(np.array(wav_vocals) * 32768).astype("int16"),
|
| 167 |
+
self.mp.param["sr"],
|
| 168 |
+
)
|
| 169 |
+
else:
|
| 170 |
+
path = os.path.join(
|
| 171 |
+
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
|
| 172 |
+
)
|
| 173 |
+
sf.write(
|
| 174 |
+
path,
|
| 175 |
+
(np.array(wav_vocals) * 32768).astype("int16"),
|
| 176 |
+
self.mp.param["sr"],
|
| 177 |
+
)
|
| 178 |
+
if os.path.exists(path):
|
| 179 |
+
os.system(
|
| 180 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 181 |
+
% (path, path[:-4] + ".%s" % format)
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
class _audio_pre_new:
|
| 186 |
+
def __init__(self, agg, model_path, device, is_half):
|
| 187 |
+
self.model_path = model_path
|
| 188 |
+
self.device = device
|
| 189 |
+
self.data = {
|
| 190 |
+
# Processing Options
|
| 191 |
+
"postprocess": False,
|
| 192 |
+
"tta": False,
|
| 193 |
+
# Constants
|
| 194 |
+
"window_size": 512,
|
| 195 |
+
"agg": agg,
|
| 196 |
+
"high_end_process": "mirroring",
|
| 197 |
+
}
|
| 198 |
+
mp = ModelParameters("/content/Mangio-RVC-Fork/lib/uvr5_pack/lib_v5/modelparams/4band_v3.json")
|
| 199 |
+
nout = 64 if "DeReverb" in model_path else 48
|
| 200 |
+
model = CascadedNet(mp.param["bins"] * 2, nout)
|
| 201 |
+
cpk = torch.load(model_path, map_location="cpu")
|
| 202 |
+
model.load_state_dict(cpk)
|
| 203 |
+
model.eval()
|
| 204 |
+
if is_half:
|
| 205 |
+
model = model.half().to(device)
|
| 206 |
+
else:
|
| 207 |
+
model = model.to(device)
|
| 208 |
+
|
| 209 |
+
self.mp = mp
|
| 210 |
+
self.model = model
|
| 211 |
+
|
| 212 |
+
def _path_audio_(
|
| 213 |
+
self, music_file, vocal_root=None, ins_root=None, format="flac"
|
| 214 |
+
): # 3个VR模型vocal和ins是反的
|
| 215 |
+
if ins_root is None and vocal_root is None:
|
| 216 |
+
return "No save root."
|
| 217 |
+
name = os.path.basename(music_file)
|
| 218 |
+
if ins_root is not None:
|
| 219 |
+
os.makedirs(ins_root, exist_ok=True)
|
| 220 |
+
if vocal_root is not None:
|
| 221 |
+
os.makedirs(vocal_root, exist_ok=True)
|
| 222 |
+
X_wave, y_wave, X_spec_s, y_spec_s = {}, {}, {}, {}
|
| 223 |
+
bands_n = len(self.mp.param["band"])
|
| 224 |
+
# print(bands_n)
|
| 225 |
+
for d in range(bands_n, 0, -1):
|
| 226 |
+
bp = self.mp.param["band"][d]
|
| 227 |
+
if d == bands_n: # high-end band
|
| 228 |
+
(
|
| 229 |
+
X_wave[d],
|
| 230 |
+
_,
|
| 231 |
+
) = librosa.core.load( # 理论上librosa读取可能对某些音频有bug,应该上ffmpeg读取,但是太麻烦了弃坑
|
| 232 |
+
music_file,
|
| 233 |
+
bp["sr"],
|
| 234 |
+
False,
|
| 235 |
+
dtype=np.float32,
|
| 236 |
+
res_type=bp["res_type"],
|
| 237 |
+
)
|
| 238 |
+
if X_wave[d].ndim == 1:
|
| 239 |
+
X_wave[d] = np.asfortranarray([X_wave[d], X_wave[d]])
|
| 240 |
+
else: # lower bands
|
| 241 |
+
X_wave[d] = librosa.core.resample(
|
| 242 |
+
X_wave[d + 1],
|
| 243 |
+
self.mp.param["band"][d + 1]["sr"],
|
| 244 |
+
bp["sr"],
|
| 245 |
+
res_type=bp["res_type"],
|
| 246 |
+
)
|
| 247 |
+
# Stft of wave source
|
| 248 |
+
X_spec_s[d] = spec_utils.wave_to_spectrogram_mt(
|
| 249 |
+
X_wave[d],
|
| 250 |
+
bp["hl"],
|
| 251 |
+
bp["n_fft"],
|
| 252 |
+
self.mp.param["mid_side"],
|
| 253 |
+
self.mp.param["mid_side_b2"],
|
| 254 |
+
self.mp.param["reverse"],
|
| 255 |
+
)
|
| 256 |
+
# pdb.set_trace()
|
| 257 |
+
if d == bands_n and self.data["high_end_process"] != "none":
|
| 258 |
+
input_high_end_h = (bp["n_fft"] // 2 - bp["crop_stop"]) + (
|
| 259 |
+
self.mp.param["pre_filter_stop"] - self.mp.param["pre_filter_start"]
|
| 260 |
+
)
|
| 261 |
+
input_high_end = X_spec_s[d][
|
| 262 |
+
:, bp["n_fft"] // 2 - input_high_end_h : bp["n_fft"] // 2, :
|
| 263 |
+
]
|
| 264 |
+
|
| 265 |
+
X_spec_m = spec_utils.combine_spectrograms(X_spec_s, self.mp)
|
| 266 |
+
aggresive_set = float(self.data["agg"] / 100)
|
| 267 |
+
aggressiveness = {
|
| 268 |
+
"value": aggresive_set,
|
| 269 |
+
"split_bin": self.mp.param["band"][1]["crop_stop"],
|
| 270 |
+
}
|
| 271 |
+
with torch.no_grad():
|
| 272 |
+
pred, X_mag, X_phase = inference(
|
| 273 |
+
X_spec_m, self.device, self.model, aggressiveness, self.data
|
| 274 |
+
)
|
| 275 |
+
# Postprocess
|
| 276 |
+
if self.data["postprocess"]:
|
| 277 |
+
pred_inv = np.clip(X_mag - pred, 0, np.inf)
|
| 278 |
+
pred = spec_utils.mask_silence(pred, pred_inv)
|
| 279 |
+
y_spec_m = pred * X_phase
|
| 280 |
+
v_spec_m = X_spec_m - y_spec_m
|
| 281 |
+
|
| 282 |
+
if ins_root is not None:
|
| 283 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
| 284 |
+
input_high_end_ = spec_utils.mirroring(
|
| 285 |
+
self.data["high_end_process"], y_spec_m, input_high_end, self.mp
|
| 286 |
+
)
|
| 287 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(
|
| 288 |
+
y_spec_m, self.mp, input_high_end_h, input_high_end_
|
| 289 |
+
)
|
| 290 |
+
else:
|
| 291 |
+
wav_instrument = spec_utils.cmb_spectrogram_to_wave(y_spec_m, self.mp)
|
| 292 |
+
print("%s instruments done" % name)
|
| 293 |
+
if format in ["wav", "flac"]:
|
| 294 |
+
sf.write(
|
| 295 |
+
os.path.join(
|
| 296 |
+
ins_root,
|
| 297 |
+
"instrument_{}_{}.{}".format(name, self.data["agg"], format),
|
| 298 |
+
),
|
| 299 |
+
(np.array(wav_instrument) * 32768).astype("int16"),
|
| 300 |
+
self.mp.param["sr"],
|
| 301 |
+
) #
|
| 302 |
+
else:
|
| 303 |
+
path = os.path.join(
|
| 304 |
+
ins_root, "instrument_{}_{}.wav".format(name, self.data["agg"])
|
| 305 |
+
)
|
| 306 |
+
sf.write(
|
| 307 |
+
path,
|
| 308 |
+
(np.array(wav_instrument) * 32768).astype("int16"),
|
| 309 |
+
self.mp.param["sr"],
|
| 310 |
+
)
|
| 311 |
+
if os.path.exists(path):
|
| 312 |
+
os.system(
|
| 313 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 314 |
+
% (path, path[:-4] + ".%s" % format)
|
| 315 |
+
)
|
| 316 |
+
if vocal_root is not None:
|
| 317 |
+
if self.data["high_end_process"].startswith("mirroring"):
|
| 318 |
+
input_high_end_ = spec_utils.mirroring(
|
| 319 |
+
self.data["high_end_process"], v_spec_m, input_high_end, self.mp
|
| 320 |
+
)
|
| 321 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(
|
| 322 |
+
v_spec_m, self.mp, input_high_end_h, input_high_end_
|
| 323 |
+
)
|
| 324 |
+
else:
|
| 325 |
+
wav_vocals = spec_utils.cmb_spectrogram_to_wave(v_spec_m, self.mp)
|
| 326 |
+
print("%s vocals done" % name)
|
| 327 |
+
if format in ["wav", "flac"]:
|
| 328 |
+
sf.write(
|
| 329 |
+
os.path.join(
|
| 330 |
+
vocal_root,
|
| 331 |
+
"vocal_{}_{}.{}".format(name, self.data["agg"], format),
|
| 332 |
+
),
|
| 333 |
+
(np.array(wav_vocals) * 32768).astype("int16"),
|
| 334 |
+
self.mp.param["sr"],
|
| 335 |
+
)
|
| 336 |
+
else:
|
| 337 |
+
path = os.path.join(
|
| 338 |
+
vocal_root, "vocal_{}_{}.wav".format(name, self.data["agg"])
|
| 339 |
+
)
|
| 340 |
+
sf.write(
|
| 341 |
+
path,
|
| 342 |
+
(np.array(wav_vocals) * 32768).astype("int16"),
|
| 343 |
+
self.mp.param["sr"],
|
| 344 |
+
)
|
| 345 |
+
if os.path.exists(path):
|
| 346 |
+
os.system(
|
| 347 |
+
"ffmpeg -i %s -vn %s -q:a 2 -y"
|
| 348 |
+
% (path, path[:-4] + ".%s" % format)
|
| 349 |
+
)
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
if __name__ == "__main__":
|
| 353 |
+
device = "cuda"
|
| 354 |
+
is_half = True
|
| 355 |
+
# model_path = "uvr5_weights/2_HP-UVR.pth"
|
| 356 |
+
model_path = "/content/Mangio-RVC-Fork/uvr5_weights/VR-DeEchoDeReverb.pth"
|
| 357 |
+
# model_path = "uvr5_weights/VR-DeEchoNormal.pth"
|
| 358 |
+
# model_path = "uvr5_weights/DeEchoNormal.pth"
|
| 359 |
+
# pre_fun = _audio_pre_(model_path=model_path, device=device, is_half=True,agg=10)
|
| 360 |
+
pre_fun = _audio_pre_new(model_path=model_path, device=device, is_half=True, agg=10)
|
| 361 |
+
audio_path = "/content/manioiii.mp3"
|
| 362 |
+
save_path = "/content/"
|
| 363 |
+
pre_fun._path_audio_(audio_path, save_path, save_path)
|