Upload inference.py
Browse files- inference.py +161 -0
inference.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding: utf-8
|
| 2 |
+
__author__ = 'Roman Solovyev (ZFTurbo): https://github.com/ZFTurbo/'
|
| 3 |
+
|
| 4 |
+
import argparse
|
| 5 |
+
import time
|
| 6 |
+
import librosa
|
| 7 |
+
from tqdm import tqdm
|
| 8 |
+
import sys
|
| 9 |
+
import os
|
| 10 |
+
import glob
|
| 11 |
+
import torch
|
| 12 |
+
import numpy as np
|
| 13 |
+
import soundfile as sf
|
| 14 |
+
import torch.nn as nn
|
| 15 |
+
|
| 16 |
+
# Using the embedded version of Python can also correctly import the utils module.
|
| 17 |
+
current_dir = os.path.dirname(os.path.abspath(__file__))
|
| 18 |
+
sys.path.append(current_dir)
|
| 19 |
+
from utils import demix_track, demix_track_demucs, get_model_from_config
|
| 20 |
+
|
| 21 |
+
import warnings
|
| 22 |
+
warnings.filterwarnings("ignore")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def run_folder(model, args, config, device, verbose=False):
|
| 26 |
+
start_time = time.time()
|
| 27 |
+
model.eval()
|
| 28 |
+
all_mixtures_path = glob.glob(args.input_folder + '/*.*')
|
| 29 |
+
all_mixtures_path.sort()
|
| 30 |
+
print('Total files found: {}'.format(len(all_mixtures_path)))
|
| 31 |
+
|
| 32 |
+
instruments = config.training.instruments
|
| 33 |
+
if config.training.target_instrument is not None:
|
| 34 |
+
instruments = [config.training.target_instrument]
|
| 35 |
+
|
| 36 |
+
if not os.path.isdir(args.store_dir):
|
| 37 |
+
os.mkdir(args.store_dir)
|
| 38 |
+
|
| 39 |
+
if not verbose:
|
| 40 |
+
all_mixtures_path = tqdm(all_mixtures_path, desc="Total progress")
|
| 41 |
+
|
| 42 |
+
if args.disable_detailed_pbar:
|
| 43 |
+
detailed_pbar = False
|
| 44 |
+
else:
|
| 45 |
+
detailed_pbar = True
|
| 46 |
+
|
| 47 |
+
for path in all_mixtures_path:
|
| 48 |
+
print("Starting processing track: ", path)
|
| 49 |
+
if not verbose:
|
| 50 |
+
all_mixtures_path.set_postfix({'track': os.path.basename(path)})
|
| 51 |
+
try:
|
| 52 |
+
# mix, sr = sf.read(path)
|
| 53 |
+
mix, sr = librosa.load(path, sr=44100, mono=False)
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print('Can read track: {}'.format(path))
|
| 56 |
+
print('Error message: {}'.format(str(e)))
|
| 57 |
+
continue
|
| 58 |
+
|
| 59 |
+
# Convert mono to stereo if needed
|
| 60 |
+
if len(mix.shape) == 1:
|
| 61 |
+
mix = np.stack([mix, mix], axis=0)
|
| 62 |
+
|
| 63 |
+
mix_orig = mix.copy()
|
| 64 |
+
if 'normalize' in config.inference:
|
| 65 |
+
if config.inference['normalize'] is True:
|
| 66 |
+
mono = mix.mean(0)
|
| 67 |
+
mean = mono.mean()
|
| 68 |
+
std = mono.std()
|
| 69 |
+
mix = (mix - mean) / std
|
| 70 |
+
|
| 71 |
+
mixture = torch.tensor(mix, dtype=torch.float32)
|
| 72 |
+
if args.model_type == 'htdemucs':
|
| 73 |
+
res = demix_track_demucs(config, model, mixture, device, pbar=detailed_pbar)
|
| 74 |
+
else:
|
| 75 |
+
res = demix_track(config, model, mixture, device, pbar=detailed_pbar)
|
| 76 |
+
|
| 77 |
+
for instr in instruments:
|
| 78 |
+
estimates = res[instr].T
|
| 79 |
+
if 'normalize' in config.inference:
|
| 80 |
+
if config.inference['normalize'] is True:
|
| 81 |
+
estimates = estimates * std + mean
|
| 82 |
+
file_name, _ = os.path.splitext(os.path.basename(path))
|
| 83 |
+
output_file = os.path.join(args.store_dir, f"{file_name}_{instr}.wav")
|
| 84 |
+
sf.write(output_file, estimates, sr, subtype = 'FLOAT')
|
| 85 |
+
|
| 86 |
+
# Output "instrumental", which is an inverse of 'vocals' (or first stem in list if 'vocals' absent)
|
| 87 |
+
if args.extract_instrumental:
|
| 88 |
+
file_name, _ = os.path.splitext(os.path.basename(path))
|
| 89 |
+
instrum_file_name = os.path.join(args.store_dir, f"{file_name}_instrumental.wav")
|
| 90 |
+
if 'vocals' in instruments:
|
| 91 |
+
estimates = res['vocals'].T
|
| 92 |
+
else:
|
| 93 |
+
estimates = res[instruments[0]].T
|
| 94 |
+
if 'normalize' in config.inference:
|
| 95 |
+
if config.inference['normalize'] is True:
|
| 96 |
+
estimates = estimates * std + mean
|
| 97 |
+
sf.write(instrum_file_name, mix_orig.T - estimates, sr, subtype = 'FLOAT')
|
| 98 |
+
|
| 99 |
+
time.sleep(1)
|
| 100 |
+
print("Elapsed time: {:.2f} sec".format(time.time() - start_time))
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
def proc_folder(args):
|
| 104 |
+
parser = argparse.ArgumentParser()
|
| 105 |
+
parser.add_argument("--model_type", type=str, default='mdx23c',
|
| 106 |
+
help="One of bandit, bandit_v2, bs_roformer, htdemucs, mdx23c, mel_band_roformer, scnet, scnet_unofficial, segm_models, swin_upernet, torchseg")
|
| 107 |
+
parser.add_argument("--config_path", type=str, help="path to config file")
|
| 108 |
+
parser.add_argument("--start_check_point", type=str, default='', help="Initial checkpoint to valid weights")
|
| 109 |
+
parser.add_argument("--input_folder", type=str, help="folder with mixtures to process")
|
| 110 |
+
parser.add_argument("--store_dir", default="", type=str, help="path to store results as wav file")
|
| 111 |
+
parser.add_argument("--device_ids", nargs='+', type=int, default=0, help='list of gpu ids')
|
| 112 |
+
parser.add_argument("--extract_instrumental", action='store_true', help="invert vocals to get instrumental if provided")
|
| 113 |
+
parser.add_argument("--disable_detailed_pbar", action='store_true', help="disable detailed progress bar")
|
| 114 |
+
parser.add_argument("--force_cpu", action = 'store_true', help = "Force the use of CPU even if CUDA is available")
|
| 115 |
+
if args is None:
|
| 116 |
+
args = parser.parse_args()
|
| 117 |
+
else:
|
| 118 |
+
args = parser.parse_args(args)
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
device = "cpu"
|
| 122 |
+
if args.force_cpu:
|
| 123 |
+
device = "cpu"
|
| 124 |
+
elif torch.cuda.is_available():
|
| 125 |
+
print('CUDA is available, use --force_cpu to disable it.')
|
| 126 |
+
device = "cuda"
|
| 127 |
+
device = f'cuda:{args.device_ids}' if type(args.device_ids) == int else f'cuda:{args.device_ids[0]}'
|
| 128 |
+
elif torch.backends.mps.is_available():
|
| 129 |
+
device = "mps"
|
| 130 |
+
|
| 131 |
+
print("Using device: ", device)
|
| 132 |
+
|
| 133 |
+
model_load_start_time = time.time()
|
| 134 |
+
torch.backends.cudnn.benchmark = True
|
| 135 |
+
|
| 136 |
+
model, config = get_model_from_config(args.model_type, args.config_path)
|
| 137 |
+
if args.start_check_point != '':
|
| 138 |
+
print('Start from checkpoint: {}'.format(args.start_check_point))
|
| 139 |
+
if args.model_type == 'htdemucs':
|
| 140 |
+
state_dict = torch.load(args.start_check_point, map_location = device, weights_only=False)
|
| 141 |
+
# Fix for htdemucs pretrained models
|
| 142 |
+
if 'state' in state_dict:
|
| 143 |
+
state_dict = state_dict['state']
|
| 144 |
+
else:
|
| 145 |
+
state_dict = torch.load(args.start_check_point, map_location = device, weights_only=True)
|
| 146 |
+
model.load_state_dict(state_dict)
|
| 147 |
+
print("Instruments: {}".format(config.training.instruments))
|
| 148 |
+
|
| 149 |
+
# in case multiple CUDA GPUs are used and --device_ids arg is passed
|
| 150 |
+
if type(args.device_ids) != int:
|
| 151 |
+
model = nn.DataParallel(model, device_ids = args.device_ids)
|
| 152 |
+
|
| 153 |
+
model = model.to(device)
|
| 154 |
+
|
| 155 |
+
print("Model load time: {:.2f} sec".format(time.time() - model_load_start_time))
|
| 156 |
+
|
| 157 |
+
run_folder(model, args, config, device, verbose=True)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
if __name__ == "__main__":
|
| 161 |
+
proc_folder(None)
|