File size: 8,043 Bytes
08427b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import hashlib
import json
import requests
import time
import numpy as np
import threading
import logging
import yaml
from web3 import Web3
from bayes_opt import BayesianOptimization
from deap import base, creator, tools
import smtplib
from email.mime.text import MIMEText

# Configure logging
logging.basicConfig(filename='shib_miner.log', level=logging.INFO,
                    format='%(asctime)s - %(levelname)s - %(message)s')

# Email notification function
def send_email(subject, body):
    """Send email notifications."""
    sender_email = "[email protected]"
    receiver_email = "[email protected]"
    password = "your_email_password"  # Use environment variables for security

    msg = MIMEText(body)
    msg['Subject'] = subject
    msg['From'] = sender_email
    msg['To'] = receiver_email

    with smtplib.SMTP('smtp.gmail.com', 587) as server:
        server.starttls()
        server.login(sender_email, password)
        server.send_message(msg)
    logging.info("Notification email sent.")

# SHIB Miner Class
class ShibMiner:
    def __init__(self, wallet_address, mining_pool_url, eth_provider_url, config):
        self.wallet_address = wallet_address
        self.mining_pool_url = mining_pool_url
        self.web3 = Web3(Web3.HTTPProvider(eth_provider_url))
        self.difficulty = None
        self.nonce = 0
        self.best_solution = None
        self.hash_rates = []
        self.max_threads = config['max_threads']
        self.thread_lock = threading.Lock()

    def get_pool_data(self):
        """Fetch pool data including difficulty."""
        try:
            response = requests.get(f'{self.mining_pool_url}/getDifficulty')
            if response.status_code == 200:
                self.difficulty = response.json()['difficulty']
                logging.info(f"Retrieved difficulty: {self.difficulty}")
            else:
                logging.error("Could not retrieve pool data")
        except Exception as e:
            logging.error(f"Error fetching pool data: {e}")

    def sha256(self, data):
        return hashlib.sha256(data.encode('utf-8')).hexdigest()

    def mine(self):
        """Start the mining process."""
        self.get_pool_data()
        block_data = f"{self.wallet_address}"

        while True:
            with self.thread_lock:
                block_hash = self.sha256(f"{block_data}{self.nonce}")
                if int(block_hash, 16) < self.difficulty:
                    logging.info(f'Mined a block: {block_hash} with nonce: {self.nonce}')
                    self.submit_work(block_hash, self.nonce)
                    break
                self.nonce += 1

    def submit_work(self, block_hash, nonce):
        """Submit mined work to the pool."""
        payload = {
            'wallet': self.wallet_address,
            'blockHash': block_hash,
            'nonce': nonce,
        }
        try:
            response = requests.post(f'{self.mining_pool_url}/submitWork', json=payload)
            if response.status_code == 200:
                logging.info("Work submitted successfully.")
                send_email("Mining Success", f"Successfully mined block: {block_hash}")
            else:
                logging.error(f"Error submitting work: {response.json()}")
                # Retry logic
                self.retry_submission(payload)
        except Exception as e:
            logging.error(f"Error submitting work: {e}")

    def retry_submission(self, payload, attempts=3):
        """Retry submission of mined work."""
        for attempt in range(attempts):
            try:
                response = requests.post(f'{self.mining_pool_url}/submitWork', json=payload)
                if response.status_code == 200:
                    logging.info("Work submitted successfully on retry.")
                    send_email("Mining Success", f"Successfully mined block on retry: {payload['blockHash']}")
                    return
            except Exception as e:
                logging.error(f"Retry attempt {attempt + 1} failed: {e}")
            time.sleep(5)  # Wait before retrying
        logging.error("All retry attempts failed.")

    def optimize_parameters(self, iterations=10):
        """Optimize mining parameters using Bayesian Optimization."""
        def black_box_function(param1, param2):
            # Simulated hash rate based on parameters
            return np.sin(param1) * np.cos(param2) + 0.5  # Simulated function

        pbounds = {'param1': (0, 10), 'param2': (0, 10)}
        optimizer = BayesianOptimization(
            f=black_box_function,
            pbounds=pbounds,
            random_state=1,
        )
        optimizer.maximize(init_points=5, n_iter=iterations)

        # Get the best parameters
        self.best_solution = optimizer.max
        logging.info("Best parameters from Bayesian Optimization: %s", self.best_solution)

    def genetic_algorithm(self, iterations=10):
        """Optimize using a Genetic Algorithm."""
        creator.create("FitnessMax", base.Fitness, weights=(1.0,))
        creator.create("Individual", list, fitness=creator.FitnessMax)

        toolbox = base.Toolbox()
        toolbox.register("attr_float", np.random.uniform, 0, 10)
        toolbox.register("individual", tools.initRepeat, creator.Individual, toolbox.attr_float, n=2)
        toolbox.register("population", tools.initRepeat, list, toolbox.individual)

        def eval_individual(individual):
            return (np.sin(individual[0]) * np.cos(individual[1]) + 0.5,)

        toolbox.register("evaluate", eval_individual)
        toolbox.register("mate", tools.cxBlend, alpha=0.5)
        toolbox.register("mutate", tools.mutGaussian, mu=0, sigma=1, indpb=0.2)
        toolbox.register("select", tools.selTournament, tournsize=3)

        population = toolbox.population(n=50)
        for gen in range(iterations):
            offspring = toolbox.select(population, len(population))
            offspring = list(map(toolbox.clone, offspring))

            for child1, child2 in zip(offspring[::2], offspring[1::2]):
                if np.random.rand() < 0.5:
                    toolbox.mate(child1, child2)
                    del child1.fitness.values
                    del child2.fitness.values

            for mutant in offspring:
                if np.random.rand() < 0.2:
                    toolbox.mutate(mutant)
                    del mutant.fitness.values

            invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
            fitnesses = map(toolbox.evaluate, invalid_ind)
            for ind, fit in zip(invalid_ind, fitnesses):
                ind.fitness.values = fit

            population[:] = offspring

        fits = [ind.fitness.values[0] for ind in population]
        self.best_solution = population[np.argmax(fits)]
        logging.info("Best parameters from Genetic Algorithm: %s", self.best_solution)

    def trinary_qubit_optimization(self):
        """Simulated Trinary Qubit Optimization."""
        # A placeholder for trinary qubit logic
        qubits = [np.random.choice([0, 1, 2]) for _ in range(10)]
        logging.info("Simulated Trinary Qubits: %s", qubits)

    def start_mining_threads(self):
        """Start multiple mining threads."""
        threads = []
        for _ in range(self.max_threads):
            thread = threading.Thread(target=self.mine)
            thread.start()
            threads.append(thread)
        
        for thread in threads:
            thread.join()

if __name__ == "__main__":


    wallet_address = config['wallet_address']
    mining_pool_url = config['mining_pool_url']
    eth_provider_url = config['eth_provider_url']

    miner = ShibMiner(wallet_address, mining_pool_url, eth_provider_url, config)

    # Perform optimizations
    miner.optimize_parameters(iterations=config['bayesian_iterations'])
    miner.genetic_algorithm(iterations=config['ga_iterations'])
    miner.trinary_qubit_optimization()

    # Start mining with multiple threads
    miner.start_mining_threads()