gautamnancy commited on
Commit
1484d1a
·
verified ·
1 Parent(s): 7aa3281

Upload 7 files

Browse files
README.md ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # 🧠 Keyphrase Extraction with BERT (Fine-Tuned on `midas/inspec`)
3
+
4
+ This repository contains a complete pipeline to **fine-tune BERT** for **Keyphrase Extraction** using the [`midas/inspec`](https://huggingface.co/datasets/midas/inspec) dataset. The model performs sequence labeling with BIO tags to extract meaningful phrases from scientific text.
5
+
6
+ ---
7
+
8
+ ## 🔧 Features
9
+
10
+ - ✅ Preprocessed dataset with BIO-tagged tokens
11
+ - ✅ Fine-tuning BERT (`bert-base-cased`) using Hugging Face Transformers
12
+ - ✅ Token-label alignment
13
+ - ✅ Evaluation using `seqeval` metrics (Precision, Recall, F1)
14
+ - ✅ Inference pipeline to extract keyphrases
15
+ - ✅ CUDA-enabled for GPU acceleration
16
+
17
+ ---
18
+
19
+ ## 📂 Dataset
20
+
21
+ **Source:** [`midas/inspec`](https://huggingface.co/datasets/midas/inspec)
22
+
23
+ - Fields:
24
+ - `document`: List of tokenized words (already split)
25
+ - `doc_bio_tags`: BIO-format labels for keyphrases
26
+ - Splits:
27
+ - `train`: 1000 samples
28
+ - `validation`: 500 samples
29
+ - `test`: 500 samples
30
+
31
+ ---
32
+
33
+ ## 🚀 Setup & Installation
34
+
35
+ ```bash
36
+ git clone https://github.com/your-username/keyphrase-bert-inspec
37
+ cd keyphrase-bert-inspec
38
+
39
+ pip install -r requirements.txt
40
+ ```
41
+
42
+ ### `requirements.txt`
43
+
44
+ ```text
45
+ datasets
46
+ transformers
47
+ evaluate
48
+ seqeval
49
+ ```
50
+
51
+ ---
52
+
53
+ ## 🧪 Training
54
+
55
+ ```python
56
+ from datasets import load_dataset
57
+ from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
58
+ ```
59
+
60
+ 1. Load and preprocess data with aligned BIO labels
61
+ 2. Fine-tune `bert-base-cased` on the dataset
62
+ 3. Evaluate and save model artifacts
63
+
64
+ ### Training Script Overview:
65
+
66
+ ```python
67
+ trainer = Trainer(
68
+ model=model,
69
+ args=training_args,
70
+ train_dataset=tokenized_datasets["train"],
71
+ eval_dataset=tokenized_datasets["validation"],
72
+ tokenizer=tokenizer,
73
+ data_collator=data_collator,
74
+ compute_metrics=compute_metrics,
75
+ )
76
+
77
+ trainer.train()
78
+ trainer.save_model("keyphrase-bert-inspec")
79
+ ```
80
+
81
+ ---
82
+
83
+ ## 📊 Evaluation Metrics
84
+
85
+ ```python
86
+ {
87
+ "precision": 0.84,
88
+ "recall": 0.81,
89
+ "f1": 0.825,
90
+ "accuracy": 0.88
91
+ }
92
+ ```
93
+
94
+ ---
95
+
96
+ ## 🔍 Inference Example
97
+
98
+ ```python
99
+ from transformers import pipeline
100
+
101
+ ner_pipeline = pipeline(
102
+ "ner",
103
+ model="keyphrase-bert-inspec",
104
+ tokenizer="keyphrase-bert-inspec",
105
+ aggregation_strategy="simple"
106
+ )
107
+
108
+ text = "Information-based semantics is a theory in the philosophy of mind."
109
+ results = ner_pipeline(text)
110
+
111
+ for r in results:
112
+ print(f"{r['word']} ({r['entity_group']}) - {r['score']:.2f}")
113
+ ```
114
+
115
+ ### Sample Output
116
+
117
+ ```
118
+ 🟢 Extracted Keyphrases:
119
+ - Information-based semantics (score: 0.94)
120
+ - philosophy of mind (score: 0.91)
121
+ ```
122
+
123
+ ---
124
+
125
+ ## 💾 Model Artifacts
126
+
127
+ After training, the model and tokenizer are saved as:
128
+
129
+ ```
130
+ keyphrase-bert-inspec/
131
+ ├── config.json
132
+ ├── pytorch_model.bin
133
+ ├── tokenizer_config.json
134
+ ├── vocab.txt
135
+ ```
136
+
137
+ ---
138
+
139
+ ## 📌 Future Improvements
140
+
141
+ - Add postprocessing to group fragmented tokens
142
+ - Use a larger dataset (like `scientific_keyphrases`)
143
+ - Convert to a web app using Gradio or Streamlit
144
+
145
+ ---
146
+
147
+ ## 👨‍🔬 Author
148
+
149
+ **Your Name**
150
+ GitHub: [@your-username](https://github.com/your-username)
151
+ Contact: [email protected]
152
+
153
+ ---
154
+
155
+ ## 📄 License
156
+
157
+ MIT License. See `LICENSE` file.
config (1).json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForTokenClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "id2label": {
12
+ "0": "O",
13
+ "1": "B",
14
+ "2": "I"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "label2id": {
19
+ "B": 1,
20
+ "I": 2,
21
+ "O": 0
22
+ },
23
+ "layer_norm_eps": 1e-12,
24
+ "max_position_embeddings": 512,
25
+ "model_type": "bert",
26
+ "num_attention_heads": 12,
27
+ "num_hidden_layers": 12,
28
+ "pad_token_id": 0,
29
+ "position_embedding_type": "absolute",
30
+ "torch_dtype": "float16",
31
+ "transformers_version": "4.51.3",
32
+ "type_vocab_size": 2,
33
+ "use_cache": true,
34
+ "vocab_size": 28996
35
+ }
model (2).safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb746d06f9e1af11b95f06a2ba6440f24907a80bff33075dabea15b969fb880e
3
+ size 215467198
special_tokens_map (1).json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer (1).json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config (1).json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab (1).txt ADDED
The diff for this file is too large to render. See raw diff