Upload 7 files
Browse files- README.md +157 -0
- config (1).json +35 -0
- model (2).safetensors +3 -0
- special_tokens_map (1).json +7 -0
- tokenizer (1).json +0 -0
- tokenizer_config (1).json +56 -0
- vocab (1).txt +0 -0
README.md
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# 🧠 Keyphrase Extraction with BERT (Fine-Tuned on `midas/inspec`)
|
3 |
+
|
4 |
+
This repository contains a complete pipeline to **fine-tune BERT** for **Keyphrase Extraction** using the [`midas/inspec`](https://huggingface.co/datasets/midas/inspec) dataset. The model performs sequence labeling with BIO tags to extract meaningful phrases from scientific text.
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## 🔧 Features
|
9 |
+
|
10 |
+
- ✅ Preprocessed dataset with BIO-tagged tokens
|
11 |
+
- ✅ Fine-tuning BERT (`bert-base-cased`) using Hugging Face Transformers
|
12 |
+
- ✅ Token-label alignment
|
13 |
+
- ✅ Evaluation using `seqeval` metrics (Precision, Recall, F1)
|
14 |
+
- ✅ Inference pipeline to extract keyphrases
|
15 |
+
- ✅ CUDA-enabled for GPU acceleration
|
16 |
+
|
17 |
+
---
|
18 |
+
|
19 |
+
## 📂 Dataset
|
20 |
+
|
21 |
+
**Source:** [`midas/inspec`](https://huggingface.co/datasets/midas/inspec)
|
22 |
+
|
23 |
+
- Fields:
|
24 |
+
- `document`: List of tokenized words (already split)
|
25 |
+
- `doc_bio_tags`: BIO-format labels for keyphrases
|
26 |
+
- Splits:
|
27 |
+
- `train`: 1000 samples
|
28 |
+
- `validation`: 500 samples
|
29 |
+
- `test`: 500 samples
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## 🚀 Setup & Installation
|
34 |
+
|
35 |
+
```bash
|
36 |
+
git clone https://github.com/your-username/keyphrase-bert-inspec
|
37 |
+
cd keyphrase-bert-inspec
|
38 |
+
|
39 |
+
pip install -r requirements.txt
|
40 |
+
```
|
41 |
+
|
42 |
+
### `requirements.txt`
|
43 |
+
|
44 |
+
```text
|
45 |
+
datasets
|
46 |
+
transformers
|
47 |
+
evaluate
|
48 |
+
seqeval
|
49 |
+
```
|
50 |
+
|
51 |
+
---
|
52 |
+
|
53 |
+
## 🧪 Training
|
54 |
+
|
55 |
+
```python
|
56 |
+
from datasets import load_dataset
|
57 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
|
58 |
+
```
|
59 |
+
|
60 |
+
1. Load and preprocess data with aligned BIO labels
|
61 |
+
2. Fine-tune `bert-base-cased` on the dataset
|
62 |
+
3. Evaluate and save model artifacts
|
63 |
+
|
64 |
+
### Training Script Overview:
|
65 |
+
|
66 |
+
```python
|
67 |
+
trainer = Trainer(
|
68 |
+
model=model,
|
69 |
+
args=training_args,
|
70 |
+
train_dataset=tokenized_datasets["train"],
|
71 |
+
eval_dataset=tokenized_datasets["validation"],
|
72 |
+
tokenizer=tokenizer,
|
73 |
+
data_collator=data_collator,
|
74 |
+
compute_metrics=compute_metrics,
|
75 |
+
)
|
76 |
+
|
77 |
+
trainer.train()
|
78 |
+
trainer.save_model("keyphrase-bert-inspec")
|
79 |
+
```
|
80 |
+
|
81 |
+
---
|
82 |
+
|
83 |
+
## 📊 Evaluation Metrics
|
84 |
+
|
85 |
+
```python
|
86 |
+
{
|
87 |
+
"precision": 0.84,
|
88 |
+
"recall": 0.81,
|
89 |
+
"f1": 0.825,
|
90 |
+
"accuracy": 0.88
|
91 |
+
}
|
92 |
+
```
|
93 |
+
|
94 |
+
---
|
95 |
+
|
96 |
+
## 🔍 Inference Example
|
97 |
+
|
98 |
+
```python
|
99 |
+
from transformers import pipeline
|
100 |
+
|
101 |
+
ner_pipeline = pipeline(
|
102 |
+
"ner",
|
103 |
+
model="keyphrase-bert-inspec",
|
104 |
+
tokenizer="keyphrase-bert-inspec",
|
105 |
+
aggregation_strategy="simple"
|
106 |
+
)
|
107 |
+
|
108 |
+
text = "Information-based semantics is a theory in the philosophy of mind."
|
109 |
+
results = ner_pipeline(text)
|
110 |
+
|
111 |
+
for r in results:
|
112 |
+
print(f"{r['word']} ({r['entity_group']}) - {r['score']:.2f}")
|
113 |
+
```
|
114 |
+
|
115 |
+
### Sample Output
|
116 |
+
|
117 |
+
```
|
118 |
+
🟢 Extracted Keyphrases:
|
119 |
+
- Information-based semantics (score: 0.94)
|
120 |
+
- philosophy of mind (score: 0.91)
|
121 |
+
```
|
122 |
+
|
123 |
+
---
|
124 |
+
|
125 |
+
## 💾 Model Artifacts
|
126 |
+
|
127 |
+
After training, the model and tokenizer are saved as:
|
128 |
+
|
129 |
+
```
|
130 |
+
keyphrase-bert-inspec/
|
131 |
+
├── config.json
|
132 |
+
├── pytorch_model.bin
|
133 |
+
├── tokenizer_config.json
|
134 |
+
├── vocab.txt
|
135 |
+
```
|
136 |
+
|
137 |
+
---
|
138 |
+
|
139 |
+
## 📌 Future Improvements
|
140 |
+
|
141 |
+
- Add postprocessing to group fragmented tokens
|
142 |
+
- Use a larger dataset (like `scientific_keyphrases`)
|
143 |
+
- Convert to a web app using Gradio or Streamlit
|
144 |
+
|
145 |
+
---
|
146 |
+
|
147 |
+
## 👨🔬 Author
|
148 |
+
|
149 |
+
**Your Name**
|
150 |
+
GitHub: [@your-username](https://github.com/your-username)
|
151 |
+
Contact: [email protected]
|
152 |
+
|
153 |
+
---
|
154 |
+
|
155 |
+
## 📄 License
|
156 |
+
|
157 |
+
MIT License. See `LICENSE` file.
|
config (1).json
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForTokenClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"id2label": {
|
12 |
+
"0": "O",
|
13 |
+
"1": "B",
|
14 |
+
"2": "I"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 3072,
|
18 |
+
"label2id": {
|
19 |
+
"B": 1,
|
20 |
+
"I": 2,
|
21 |
+
"O": 0
|
22 |
+
},
|
23 |
+
"layer_norm_eps": 1e-12,
|
24 |
+
"max_position_embeddings": 512,
|
25 |
+
"model_type": "bert",
|
26 |
+
"num_attention_heads": 12,
|
27 |
+
"num_hidden_layers": 12,
|
28 |
+
"pad_token_id": 0,
|
29 |
+
"position_embedding_type": "absolute",
|
30 |
+
"torch_dtype": "float16",
|
31 |
+
"transformers_version": "4.51.3",
|
32 |
+
"type_vocab_size": 2,
|
33 |
+
"use_cache": true,
|
34 |
+
"vocab_size": 28996
|
35 |
+
}
|
model (2).safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb746d06f9e1af11b95f06a2ba6440f24907a80bff33075dabea15b969fb880e
|
3 |
+
size 215467198
|
special_tokens_map (1).json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer (1).json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config (1).json
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_lower_case": false,
|
47 |
+
"extra_special_tokens": {},
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "[PAD]",
|
51 |
+
"sep_token": "[SEP]",
|
52 |
+
"strip_accents": null,
|
53 |
+
"tokenize_chinese_chars": true,
|
54 |
+
"tokenizer_class": "BertTokenizer",
|
55 |
+
"unk_token": "[UNK]"
|
56 |
+
}
|
vocab (1).txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|