gautamnancy commited on
Commit
adaaf78
·
verified ·
1 Parent(s): fa3129e

Upload 7 files

Browse files
README_language_classification.md ADDED
@@ -0,0 +1,130 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # BERT-Based Language Classification Model
2
+
3
+ This repository contains a fine-tuned BERT-based model for classifying text into different languages. The model is designed to identify the language of a given sentence and has been trained using the Hugging Face Transformers library. It supports post-training dynamic quantization for optimized performance in deployment environments.
4
+
5
+ ---
6
+
7
+ ## Model Details
8
+
9
+ - **Model Name:** BERT Base for Language Classification
10
+ - **Model Architecture:** BERT Base
11
+ - **Task:** Language Identification
12
+ - **Dataset:** Custom Dataset with multilingual text samples
13
+ - **Quantization:** Dynamic Quantization (INT8)
14
+ - **Fine-tuning Framework:** Hugging Face Transformers
15
+
16
+ ---
17
+
18
+ ## Usage
19
+
20
+ ### Installation
21
+
22
+ ```bash
23
+ pip install transformers torch
24
+ ```
25
+
26
+ ### Loading the Fine-tuned Model
27
+
28
+ ```python
29
+ from transformers import pipeline
30
+
31
+ # Load the model and tokenizer from saved directory
32
+ classifier = pipeline("text-classification", model="./saved_model", tokenizer="./saved_model")
33
+
34
+ # Example input
35
+ text = "Bonjour, comment allez-vous?"
36
+
37
+ # Get prediction
38
+ prediction = classifier(text)
39
+ print(f"Prediction: {prediction}")
40
+ ```
41
+
42
+ ---
43
+
44
+ ## Saving and Testing the Model
45
+
46
+ ### Saving
47
+
48
+ ```python
49
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
50
+
51
+ model_checkpoint = "bert-base-uncased" # or your fine-tuned model path
52
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
53
+ model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
54
+
55
+ # Save model and tokenizer
56
+ model.save_pretrained("./saved_model")
57
+ tokenizer.save_pretrained("./saved_model")
58
+ ```
59
+
60
+ ### Testing
61
+
62
+ ```python
63
+ from transformers import pipeline
64
+
65
+ classifier = pipeline("text-classification", model="./saved_model", tokenizer="./saved_model")
66
+ text = "Ceci est un exemple de texte."
67
+ print(classifier(text))
68
+ ```
69
+
70
+ ---
71
+
72
+ ## Quantization
73
+
74
+ ### Apply Dynamic Quantization
75
+
76
+ ```python
77
+ import torch
78
+ from transformers import AutoModelForSequenceClassification
79
+
80
+ model = AutoModelForSequenceClassification.from_pretrained("./saved_model")
81
+
82
+ # Apply dynamic quantization
83
+ quantized_model = torch.quantization.quantize_dynamic(
84
+ model, {torch.nn.Linear}, dtype=torch.qint8
85
+ )
86
+
87
+ # Save quantized model
88
+ quantized_model.save_pretrained("./quantized_model")
89
+ ```
90
+
91
+ ### Load and Test Quantized Model
92
+
93
+ ```python
94
+ from transformers import AutoTokenizer, pipeline
95
+ from transformers import AutoModelForSequenceClassification
96
+
97
+ tokenizer = AutoTokenizer.from_pretrained("./saved_model")
98
+ quantized_model = AutoModelForSequenceClassification.from_pretrained("./quantized_model")
99
+
100
+ classifier = pipeline("text-classification", model=quantized_model, tokenizer=tokenizer)
101
+ text = "Hola, ¿cómo estás?"
102
+ print(classifier(text))
103
+ ```
104
+
105
+ ---
106
+
107
+ ## Repository Structure
108
+
109
+ ```
110
+ .
111
+ ├── saved_model/ # Fine-tuned Model
112
+ ├── quantized_model/ # Quantized Model
113
+ ├── language-clasification.ipynb
114
+ ├── README.md # Documentation
115
+ ```
116
+
117
+ ---
118
+
119
+ ## Limitations
120
+
121
+ - The model performance may vary for low-resource or underrepresented languages in the training dataset.
122
+ - Quantization may slightly reduce accuracy, but improves inference efficiency.
123
+
124
+ ---
125
+
126
+ ## Contributing
127
+
128
+ Feel free to submit issues or pull requests to enhance performance, accuracy, or add new language support.
129
+
130
+ ---
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "gradient_checkpointing": false,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float16",
21
+ "transformers_version": "4.51.3",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2482cf07a839e4f091ada914e740ad10849999df90e38f157b86d5d0c8a710da
3
+ size 218990972
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff