Upload 7 files
Browse files- README_paraphrase_detection.md +124 -0
- config (1).json +26 -0
- model (2).safetensors +3 -0
- special_tokens_map (1).json +37 -0
- tokenizer (1).json +0 -0
- tokenizer_config (1).json +58 -0
- vocab (1).txt +0 -0
README_paraphrase_detection.md
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Paraphrase Detection Pipeline using Transformers
|
3 |
+
|
4 |
+
This repository provides a complete pipeline to fine-tune a transformer model for **Paraphrase Detection** using the PAWS dataset.
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
## Steps
|
9 |
+
|
10 |
+
### 1. Load Dataset
|
11 |
+
Load the PAWS dataset which contains pairs of sentences with labels indicating if they are paraphrases or not.
|
12 |
+
|
13 |
+
```python
|
14 |
+
from datasets import load_dataset
|
15 |
+
dataset = load_dataset("paws", "labeled_final")
|
16 |
+
```
|
17 |
+
|
18 |
+
### 2. Preprocess and Tokenize
|
19 |
+
Tokenize sentence pairs with padding and truncation.
|
20 |
+
|
21 |
+
```python
|
22 |
+
from transformers import AutoTokenizer
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/paraphrase-MiniLM-L6-v2")
|
24 |
+
|
25 |
+
def preprocess_function(examples):
|
26 |
+
return tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, padding="max_length", max_length=128)
|
27 |
+
|
28 |
+
tokenized_datasets = dataset.map(preprocess_function, batched=True)
|
29 |
+
```
|
30 |
+
|
31 |
+
### 3. Load Model
|
32 |
+
Load a pre-trained sequence classification model suitable for paraphrase detection.
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import AutoModelForSequenceClassification
|
36 |
+
model = AutoModelForSequenceClassification.from_pretrained("sentence-transformers/paraphrase-MiniLM-L6-v2", num_labels=2)
|
37 |
+
```
|
38 |
+
|
39 |
+
### 4. Fine-tune the Model
|
40 |
+
Setup training arguments and fine-tune the model using the Trainer API.
|
41 |
+
|
42 |
+
```python
|
43 |
+
from transformers import TrainingArguments, Trainer
|
44 |
+
import evaluate
|
45 |
+
|
46 |
+
training_args = TrainingArguments(
|
47 |
+
output_dir="./paraphrase-detector",
|
48 |
+
evaluation_strategy="epoch",
|
49 |
+
save_strategy="epoch",
|
50 |
+
learning_rate=2e-5,
|
51 |
+
per_device_train_batch_size=16,
|
52 |
+
per_device_eval_batch_size=64,
|
53 |
+
num_train_epochs=3,
|
54 |
+
weight_decay=0.01,
|
55 |
+
load_best_model_at_end=True,
|
56 |
+
metric_for_best_model="accuracy"
|
57 |
+
)
|
58 |
+
|
59 |
+
accuracy = evaluate.load("accuracy")
|
60 |
+
|
61 |
+
def compute_metrics(eval_preds):
|
62 |
+
logits, labels = eval_preds
|
63 |
+
predictions = logits.argmax(axis=-1)
|
64 |
+
return accuracy.compute(predictions=predictions, references=labels)
|
65 |
+
|
66 |
+
trainer = Trainer(
|
67 |
+
model=model,
|
68 |
+
args=training_args,
|
69 |
+
train_dataset=tokenized_datasets["train"],
|
70 |
+
eval_dataset=tokenized_datasets["validation"],
|
71 |
+
tokenizer=tokenizer,
|
72 |
+
compute_metrics=compute_metrics,
|
73 |
+
)
|
74 |
+
|
75 |
+
trainer.train()
|
76 |
+
trainer.save_model("paraphrase-detector")
|
77 |
+
```
|
78 |
+
|
79 |
+
### 5. Evaluate
|
80 |
+
Evaluate the fine-tuned model.
|
81 |
+
|
82 |
+
```python
|
83 |
+
eval_results = trainer.evaluate()
|
84 |
+
print(eval_results)
|
85 |
+
```
|
86 |
+
|
87 |
+
### 6. Inference
|
88 |
+
Use the fine-tuned model for paraphrase detection inference.
|
89 |
+
|
90 |
+
```python
|
91 |
+
from transformers import pipeline
|
92 |
+
|
93 |
+
paraphrase_pipeline = pipeline("text-classification", model="paraphrase-detector", tokenizer=tokenizer)
|
94 |
+
|
95 |
+
example = paraphrase_pipeline({
|
96 |
+
"text": "How old are you?",
|
97 |
+
"text_pair": "What is your age?"
|
98 |
+
})
|
99 |
+
|
100 |
+
print(example)
|
101 |
+
```
|
102 |
+
|
103 |
+
---
|
104 |
+
|
105 |
+
## Requirements
|
106 |
+
- `datasets`
|
107 |
+
- `transformers`
|
108 |
+
- `evaluate`
|
109 |
+
|
110 |
+
Install dependencies with:
|
111 |
+
|
112 |
+
```bash
|
113 |
+
pip install datasets transformers evaluate
|
114 |
+
```
|
115 |
+
|
116 |
+
---
|
117 |
+
|
118 |
+
## Author
|
119 |
+
Your Name - [email protected]
|
120 |
+
|
121 |
+
---
|
122 |
+
|
123 |
+
## License
|
124 |
+
MIT License
|
config (1).json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertForSequenceClassification"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 1536,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 6,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"problem_type": "single_label_classification",
|
21 |
+
"torch_dtype": "float16",
|
22 |
+
"transformers_version": "4.51.3",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
model (2).safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:082b6a4554b030aa6f347938550c83b72a796483f2e9c2a68a3220dfa9eb25fd
|
3 |
+
size 45439980
|
special_tokens_map (1).json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer (1).json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config (1).json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": false,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"extra_special_tokens": {},
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_token": "[PAD]",
|
53 |
+
"sep_token": "[SEP]",
|
54 |
+
"strip_accents": null,
|
55 |
+
"tokenize_chinese_chars": true,
|
56 |
+
"tokenizer_class": "BertTokenizer",
|
57 |
+
"unk_token": "[UNK]"
|
58 |
+
}
|
vocab (1).txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|