Aryan7500 commited on
Commit
94966f0
·
verified ·
1 Parent(s): d72da34

Upload 7 files

Browse files
Files changed (7) hide show
  1. README.md +99 -0
  2. config.json +39 -0
  3. merges.txt +0 -0
  4. model.safetensors +3 -0
  5. special_tokens_map.json +51 -0
  6. tokenizer_config.json +57 -0
  7. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # RoBERTa-Based Topic Classification Model Using AG News Dataset
2
+
3
+ This repository hosts a RoBERTa-based transformer model fine-tuned for topic classification on the AG News dataset. The model identifies topics such as World, Sports, Business, and Science/Technology in a given news text.
4
+
5
+ ## Model Details
6
+
7
+ - **Model Architecture:** RoBERTa (roberta-base)
8
+ - **Task:** Topic Classification
9
+ - **Dataset:** AG News (from Hugging Face Datasets)
10
+ - **Fine-tuning Framework:** Hugging Face Transformers
11
+
12
+ ## Usage
13
+
14
+ ### Installation
15
+
16
+ ```sh
17
+ pip install transformers datasets torch
18
+ ```
19
+
20
+ ### Loading and Predicting
21
+
22
+ ```python
23
+ from transformers import RobertaTokenizer, RobertaForSequenceClassification
24
+ import torch
25
+
26
+ # Load model and tokenizer
27
+ model = RobertaForSequenceClassification.from_pretrained("your-saved-model-directory")
28
+ tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
29
+ model.eval()
30
+
31
+ # Sample prediction
32
+ def predict_topic(texts, model, tokenizer, device='cpu'):
33
+ import re
34
+ if isinstance(texts, str):
35
+ texts = [texts]
36
+
37
+ def preprocess(text):
38
+ text = text.lower()
39
+ text = re.sub(r"http\S+|www\S+|https\S+", '', text)
40
+ text = re.sub(r'\@\w+|\#', '', text)
41
+ text = re.sub(r"[^a-zA-Z0-9\s.,!?']", '', text)
42
+ text = re.sub(r'\s+', ' ', text).strip()
43
+ return text
44
+
45
+ cleaned_texts = [preprocess(t) for t in texts]
46
+ inputs = tokenizer(cleaned_texts, padding=True, truncation=True, return_tensors="pt").to(device)
47
+
48
+ model.to(device)
49
+ model.eval()
50
+ with torch.no_grad():
51
+ outputs = model(**inputs)
52
+ preds = torch.argmax(outputs.logits, dim=1).tolist()
53
+
54
+ label_map = {0: "World", 1: "Sports", 2: "Business", 3: "Sci/Tech"}
55
+ return [label_map[p] for p in preds]
56
+
57
+ # Example
58
+ sample_texts = [
59
+ "The stock market witnessed a major crash today due to inflation concerns.",
60
+ "The new space telescope has captured unprecedented images of distant galaxies."
61
+ ]
62
+ results = predict_topic(sample_texts, model, tokenizer)
63
+ for text, label in zip(sample_texts, results):
64
+ print(f"Text: {text}\nPredicted Topic: {label}\n")
65
+ ```
66
+
67
+ ## Performance Metrics
68
+
69
+ - **Accuracy:** ~0.96 on AG News test split
70
+
71
+ ## Fine-Tuning Details
72
+
73
+ ### Dataset
74
+
75
+ The dataset is sourced from the AG News dataset available via Hugging Face Datasets.
76
+
77
+ ### Training
78
+
79
+ - Number of epochs: 3
80
+ - Batch size: 8
81
+ - Evaluation strategy: epoch
82
+ - Learning rate: 2e-5
83
+
84
+ ## Repository Structure
85
+
86
+ ```
87
+ .
88
+ ├── model/ # Contains the fine-tuned model files
89
+ ├── tokenizer/ # Tokenizer configuration and vocab
90
+ ├── README.md # Model documentation
91
+ ```
92
+
93
+ ## Limitations
94
+
95
+ - The model is trained specifically for AG News-style texts and may not generalize well to informal or unrelated domains.
96
+
97
+ ## Contributing
98
+
99
+ Contributions are welcome! Please open an issue or submit a PR for suggestions or improvements.
config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "RobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0",
14
+ "1": "LABEL_1",
15
+ "2": "LABEL_2",
16
+ "3": "LABEL_3"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "LABEL_0": 0,
22
+ "LABEL_1": 1,
23
+ "LABEL_2": 2,
24
+ "LABEL_3": 3
25
+ },
26
+ "layer_norm_eps": 1e-05,
27
+ "max_position_embeddings": 514,
28
+ "model_type": "roberta",
29
+ "num_attention_heads": 12,
30
+ "num_hidden_layers": 12,
31
+ "pad_token_id": 1,
32
+ "position_embedding_type": "absolute",
33
+ "problem_type": "single_label_classification",
34
+ "torch_dtype": "float16",
35
+ "transformers_version": "4.51.3",
36
+ "type_vocab_size": 1,
37
+ "use_cache": true,
38
+ "vocab_size": 50265
39
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f9a9ada76280e737a482c2bc9391d8334408ea67a6a83827faea171d85f1d8e
3
+ size 249321504
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": true,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": true,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": true,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 512,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff