Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
**π§ SMSDetection-DistilBERT-SMS**
|
3 |
+
|
4 |
+
A DistilBERT-based binary classifier fine-tuned on the SMS Spam Collection dataset. It classifies messages as either **spam** or **ham** (not spam). This model is suitable for real-world applications like mobile SMS spam filters, automated customer message triage, and telecom fraud detection.
|
5 |
+
|
6 |
+
---
|
7 |
+
|
8 |
+
β¨ **Model Highlights**
|
9 |
+
|
10 |
+
- π Based on `distilbert-base-uncased`
|
11 |
+
- π Fine-tuned on the SMS Spam Collection dataset
|
12 |
+
- β‘ Supports binary classification: Spam vs Not Spam
|
13 |
+
- πΎ Lightweight and optimized for both CPU and GPU environments
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
π§ Intended Uses
|
18 |
+
|
19 |
+
- β
Mobile SMS spam filtering
|
20 |
+
- β
Telecom customer service automation
|
21 |
+
- β
Fraudulent message detection
|
22 |
+
- β
User inbox categorization
|
23 |
+
- β
Regulatory compliance monitoring
|
24 |
+
|
25 |
+
---
|
26 |
+
- π« Limitations
|
27 |
+
|
28 |
+
- β Trained on English SMS messages only
|
29 |
+
- β May underperform on emails, social media texts, or non-English content
|
30 |
+
- β Not designed for multilingual datasets
|
31 |
+
- β Slight performance dip expected for long messages (>128 tokens)
|
32 |
+
|
33 |
+
---
|
34 |
+
|
35 |
+
ποΈββοΈ Training Details
|
36 |
+
|
37 |
+
| Field | Value |
|
38 |
+
| -------------- | ------------------------------ |
|
39 |
+
| **Base Model** | `distilbert-base-uncased` |
|
40 |
+
| **Dataset** |SMS Spam Collection (UCI) |
|
41 |
+
| **Framework** | PyTorch with π€ Transformers |
|
42 |
+
| **Epochs** | 3 |
|
43 |
+
| **Batch Size** | 16 |
|
44 |
+
| **Max Length** | 128 tokens |
|
45 |
+
| **Optimizer** | AdamW |
|
46 |
+
| **Loss** | CrossEntropyLoss (token-level) |
|
47 |
+
| **Device** | Trained on CUDA-enabled GPU |
|
48 |
+
|
49 |
+
---
|
50 |
+
|
51 |
+
π Evaluation Metrics
|
52 |
+
|
53 |
+
| Metric | Score |
|
54 |
+
| ----------------------------------------------- | ----- |
|
55 |
+
| Accuracy | 0.99 |
|
56 |
+
| F1-Score | 0.96 |
|
57 |
+
| Precision | 0.98 |
|
58 |
+
| Recall | 0.93 |
|
59 |
+
|
60 |
+
|
61 |
+
---
|
62 |
+
|
63 |
+
|
64 |
+
---
|
65 |
+
π Usage
|
66 |
+
```python
|
67 |
+
from transformers import BertTokenizerFast, BertForTokenClassification
|
68 |
+
from transformers import pipeline
|
69 |
+
import torch
|
70 |
+
|
71 |
+
model_name = "AventIQ-AI/SMS-Spam-Detection-Model"
|
72 |
+
tokenizer = BertTokenizerFast.from_pretrained(model_name)
|
73 |
+
model = BertForTokenClassification.from_pretrained(model_name)
|
74 |
+
model.eval()
|
75 |
+
|
76 |
+
|
77 |
+
# Inference
|
78 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
79 |
+
model.to(device)
|
80 |
+
|
81 |
+
def predict_sms(text):
|
82 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
|
83 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
84 |
+
with torch.no_grad():
|
85 |
+
outputs = model(**inputs)
|
86 |
+
logits = outputs.logits
|
87 |
+
predicted = torch.argmax(logits, dim=1).item()
|
88 |
+
return "spam" if predicted == 1 else "ham"
|
89 |
+
|
90 |
+
# Test example
|
91 |
+
print(predict_sms("You've won $1,000,000! Call now to claim your prize!"))
|
92 |
+
|
93 |
+
```
|
94 |
+
---
|
95 |
+
|
96 |
+
- π§© Quantization
|
97 |
+
- Post-training static quantization applied using PyTorch to reduce model size and accelerate inference on edge devices.
|
98 |
+
|
99 |
+
----
|
100 |
+
|
101 |
+
π Repository Structure
|
102 |
+
```
|
103 |
+
.
|
104 |
+
βββ model/ # Quantized model files
|
105 |
+
βββ tokenizer_config/ # Tokenizer and vocab files
|
106 |
+
βββ model.safensors/ # Fine-tuned model in safetensors format
|
107 |
+
βββ README.md # Model card
|
108 |
+
|
109 |
+
```
|
110 |
+
---
|
111 |
+
π€ Contributing
|
112 |
+
|
113 |
+
Open to improvements and feedback! Feel free to submit a pull request or open an issue if you find any bugs or want to enhance the model.
|
114 |
+
|
115 |
+
|
116 |
+
|