Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# π Contract Sentiment Classifier (BERT)
|
2 |
+
|
3 |
+
A fine-tuned BERT model for contract sentiment analysis, classifying legal or contractual text into positive, negative, or neutral sentiments.
|
4 |
+
|
5 |
+
|
6 |
+
## π§ Model Details
|
7 |
+
|
8 |
+
- π**Base Model**: bert-base-uncased
|
9 |
+
- π§**Task**: Sentiment Classification (Contractual Text)
|
10 |
+
- π **Labels**: `Negative (0)`, `Neutral (1)`, `Positive (2)`
|
11 |
+
- πΎ **Quantized version available**: for faster inference
|
12 |
+
- π§ **Framework**: PyTorch, Transformers (π€ Hugging Face)
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
## π§ Intended Uses
|
18 |
+
|
19 |
+
- β
Classifying product feedback and user reviews
|
20 |
+
- β
Sentiment analysis for e-commerce platforms
|
21 |
+
- β
Social media monitoring and customer opinion mining
|
22 |
+
|
23 |
+
---
|
24 |
+
|
25 |
+
## π« Limitations
|
26 |
+
|
27 |
+
- β Designed for English texts only
|
28 |
+
- βNeeds further tuning and evaluation on larger, diverse contract.
|
29 |
+
- β Not suitable for production use without robustness checks.
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
## ποΈββοΈ Training Details
|
34 |
+
|
35 |
+
- **Base Model**: `bert-base-uncased`
|
36 |
+
- **Dataset**: Custom labeled Contract Sentiment dataset
|
37 |
+
- **Epochs**: 3
|
38 |
+
- **Batch Size**: 5
|
39 |
+
- **Learning rate**: AdamW
|
40 |
+
- **Hardware**: Trained on NVIDIA GPU (CUDA-enabled)
|
41 |
+
|
42 |
+
---
|
43 |
+
|
44 |
+
## π Evaluation Metrics
|
45 |
+
|
46 |
+
| Metric | Score |
|
47 |
+
|------------|-------|
|
48 |
+
| Accuracy | 0.98 |
|
49 |
+
| F1 | 0.99 |
|
50 |
+
| Precision | 0.99 |
|
51 |
+
| Recall | 0.97 |
|
52 |
+
|
53 |
+
---
|
54 |
+
|
55 |
+
## π Label Mapping
|
56 |
+
|
57 |
+
| Label ID | Sentiment |
|
58 |
+
|----------|-----------|
|
59 |
+
| 0 | Negative |
|
60 |
+
| 1 | Neutral |
|
61 |
+
| 2 | Positive |
|
62 |
+
|
63 |
+
---
|
64 |
+
|
65 |
+
## π Usage Example
|
66 |
+
|
67 |
+
```python
|
68 |
+
import pandas as pd
|
69 |
+
from sklearn.model_selection import train_test_split
|
70 |
+
from sklearn.preprocessing import LabelEncoder
|
71 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
72 |
+
import torch
|
73 |
+
from transformers import BertTokenizer, BertForSequenceClassification, Trainer, TrainingArguments
|
74 |
+
from datasets import Dataset
|
75 |
+
import torch.nn.functional as F
|
76 |
+
|
77 |
+
# Load model and tokenizer
|
78 |
+
model_name = "AventIQ-AI/Sentiment-Analysis-for-Contract-Sentiment"
|
79 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
80 |
+
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=3)
|
81 |
+
model.eval()
|
82 |
+
|
83 |
+
def tokenize_function(examples):
|
84 |
+
return tokenizer(examples['text'], padding='max_length', truncation=True)
|
85 |
+
|
86 |
+
|
87 |
+
# Inference
|
88 |
+
def predict_sentiment(user_text):
|
89 |
+
# Ensure input is a list for batch processing
|
90 |
+
if isinstance(user_text, str):
|
91 |
+
user_text = [user_text]
|
92 |
+
|
93 |
+
# Tokenize input text
|
94 |
+
inputs = tokenizer(user_text, return_tensors="pt", padding=True, truncation=True)
|
95 |
+
|
96 |
+
# Predict using the model
|
97 |
+
with torch.no_grad():
|
98 |
+
outputs = model(**inputs)
|
99 |
+
preds = torch.argmax(outputs.logits, dim=1)
|
100 |
+
|
101 |
+
# Decode predictions back to original sentiment labels
|
102 |
+
decoded_preds = label_encoder.inverse_transform(preds.numpy())
|
103 |
+
|
104 |
+
# Print each prediction
|
105 |
+
for text, sentiment in zip(user_text, decoded_preds):
|
106 |
+
print(f"Text: '{text}' => Sentiment: {sentiment}")
|
107 |
+
|
108 |
+
|
109 |
+
# Example
|
110 |
+
predict_sentiment("The delivery scheduled")
|
111 |
+
```
|
112 |
+
|
113 |
+
---
|
114 |
+
|
115 |
+
## π§ͺ Quantization
|
116 |
+
|
117 |
+
- Applied **post-training dynamic quantization** using PyTorch to reduce model size and speed up inference.
|
118 |
+
- Quantized model supports CPU-based deployments.
|
119 |
+
|
120 |
+
---
|
121 |
+
|
122 |
+
## π Repository Structure
|
123 |
+
|
124 |
+
```
|
125 |
+
.
|
126 |
+
βββ model/ # Quantized model files
|
127 |
+
βββ tokenizer/ # Tokenizer config and vocabulary
|
128 |
+
βββ model.safetensors/ # Fine-tuned full-precision model
|
129 |
+
βββ README.md # Model documentation
|
130 |
+
```
|
131 |
+
|
132 |
+
---
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
## π€ Contributing
|
137 |
+
|
138 |
+
We welcome contributions! Please feel free to raise an issue or submit a pull request if you find a bug or have a suggestion.
|