# BERT-Base-Uncased Quantized Model for Twitter Tweet Sentiment Classification This repository hosts a quantized version of the **T5-Base** model, fine-tuned for **Movie Script Writting**. The model is optimized for efficient deployment while maintaining high accuracy, making it suitable for resource-constrained environments such as mobile and edge devices. ## Model Details - **Model Architecture:** T5-Base - **Task:** Movie Script Writting - **Dataset:** bookcorpus - **Quantization:** Float16 (FP16) - **Fine-tuning Framework:** Hugging Face Transformers - **Inference Framework:** PyTorch ## Usage ### Installation ```sh pip install transformers torch ``` ### Loading the Model ```python from transformers import BertForSequenceClassification, BertTokenizer import torch # Load quantized model quantized_model_path = "path/to/bert_finetuned_fp16" def generate_script(prompt): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Check available device model.to(device) # Move model to the appropriate device inputs = tokenizer(f"Generate a movie script: {prompt}", return_tensors="pt", truncation=True, padding="max_length", max_length=256) inputs = {key: value.to(device) for key, value in inputs.items()} # Move inputs to same device as model with torch.no_grad(): outputs = model.generate(**inputs, max_length=256, num_return_sequences=1) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Test the script generator prompt = "SCENE: EXT. DARK ALLEY - NIGHT" print(generate_script(prompt)) ## Performance Metrics - **Accuracy:** 0.82 - **Inference Speed:** Faster due to FP16 quantization ## Fine-Tuning Details ### Dataset ### Training Configuration - **Number of epochs:** 3 - **Batch size:** 8 - **Evaluation strategy:** Per epoch - **Learning rate:** 2e-5 - **Optimizer:** AdamW ### Quantization The model is quantized using **Post-Training Quantization (PTQ)** with **Float16 (FP16)**, which reduces model size and improves inference efficiency while maintaining accuracy. ## Repository Structure ``` . ├── model/ # Contains the quantized model files ├── tokenizer_config/ # Tokenizer configuration and vocabulary files ├── model.safensors/ # Fine-tuned and quantized model ├── README.md # Model documentation ``` ## Limitations - The model is optimized for English-language next-word prediction tasks. - While quantization improves speed, minor accuracy degradation may occur. - Performance on out-of-distribution text (e.g., highly technical or domain-specific data) may be limited. ## Contributing Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements. ``