File size: 3,277 Bytes
a675abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

# Set device
device = "cuda" if torch.cuda.is_available() else "cpu"

# Model and tokenizer
model_name = "AventIQ-AI/gpt2-lmheadmodel-next-line-prediction-model"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)

import html

# Define test text
sample_text = "Artificial intelligence is transforming"

# Tokenize input
inputs = tokenizer(sample_text, return_tensors="pt").to(device)

# Generate prediction
with torch.no_grad():
    output_tokens = model.generate(
        **inputs,
        max_length=50,
        num_beams=5,
        repetition_penalty=1.5,
        temperature=0.7,
        top_k=50,
        top_p=0.9,
        do_sample=True,
        no_repeat_ngram_size=2,
        num_return_sequences=1,
        early_stopping=True,
        length_penalty=1.0,
        pad_token_id=tokenizer.eos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        return_dict_in_generate=True,
        output_scores=True
    )

# Decode and clean response
generated_response = tokenizer.decode(output_tokens.sequences[0], skip_special_tokens=True)
cleaned_response = html.unescape(generated_response).replace("#39;", "'").replace("quot;", '"')

print("\nGenerated Response:\n", cleaned_response)

## GPT-2 for Next-line Prediction

This repository hosts a fine-tuned GPT-2 model optimized for **next-line prediction** tasks. The model has been fine-tuned on the **OpenWebText** dataset and quantized in **FP16** format to enhance efficiency without compromising performance.

## Model Details

- **Model Architecture:** GPT-2 (Causal Language Model)
- **Task:** Next-line Prediction
- **Dataset:** OpenWebText (subset: `stas/openwebtext-10k`)
- **Quantization:** FP16 for reduced model size and faster inference
- **Fine-tuning Framework:** Hugging Face Transformers

## Training Details

- **Number of Epochs:** 3  
- **Batch Size:** 4  
- **Evaluation Strategy:** Epoch  
- **Learning Rate:** 5e-5  

## Evaluation Metrics (Perplexity Score)
Perplexity Score: 14.355693817138672

## Limitations

- The model is optimized for English-language next-word prediction tasks.
- While quantization improves speed, minor accuracy degradation may occur.
- Performance on out-of-distribution text (e.g., highly technical or domain-specific data) may be limited.

## Usage Instructions

### Installation

```sh
pip install transformers torch
```

### Loading the Model in Python

```python
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch

device = "cuda" if torch.cuda.is_available() else "cpu"

model_name = "AventIQ-AI/gpt2-lmheadmodel-next-line-prediction-model"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name).to(device)
```

## Repository Structure

```
.
β”œβ”€β”€ model/               # Contains the quantized model files
β”œβ”€β”€ tokenizer_config/    # Tokenizer configuration and vocabulary files
β”œβ”€β”€ model.safetensors/   # Quantized Model
β”œβ”€β”€ README.md            # Model documentation
```

## Contributing

Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.