File size: 2,649 Bytes
27cda1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# RoBERTa-Base Quantized Model for Named Entity Recognition (NER)

This repository contains a quantized version of the RoBERTa model fine-tuned for Named Entity Recognition (NER) on the WikiANN (English) dataset. The model is particularly suitable for **tagging named entities in news articles**, such as persons, organizations, and locations. It has been optimized for efficient deployment using quantization techniques.


## Model Details
 
- **Model Architecture:** RoBERTa Base   
- **Task:** Named Entity Recognition 
- **Dataset:** WikiANN (English)
- **Use Case:** Tagging news articles with named entities  
- **Quantization:** Float16  
- **Fine-tuning Framework:** Hugging Face Transformers  

## Usage
 
### Installation
 
```sh

pip install transformers torch

```
 
 
### Loading the Model
 
```python

 

from transformers import RobertaTokenizerFast, RobertaForSequenceClassification, Trainer, TrainingArguments

import torch





 

# Load tokenizer



tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")

 

# Create NER pipeline

ner_pipeline = pipeline(

    "ner",

    model=model,

    tokenizer=tokenizer,

    aggregation_strategy="simple"

)



# Sample news headline

text = "Apple Inc. is planning to open a new campus in London by the end of 2025."



# Inference

entities = ner_pipeline(text)



# Display results

for ent in entities:

    print(f"{ent['word']}: {ent['entity_group']} ({ent['score']:.2f})")



```
 
## Performance Metrics
 
- **Accuracy:** 0.923422	
- **Precision:** 0.923052	
- **Recall:** 0.923422
- **F1:** 0.923150

 
## Fine-Tuning Details
 
### Dataset
 
The dataset is taken from Hugging Face WikiANN (English).
 
### Training
 
- Number of epochs: 5  

- Batch size: 16

- Evaluation strategy: epoch  

- Learning rate: 3e-5  
 
### Quantization
 
Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency.
 
## Repository Structure
 
```



.

β”œβ”€β”€ config.json

β”œβ”€β”€ tokenizer_config.json    

β”œβ”€β”€ sepcial_tokens_map.json 

β”œβ”€β”€ tokenizer.json        

β”œβ”€β”€ model.safetensors    # Fine Tuned Model

β”œβ”€β”€ README.md            # Model documentation



```
 
## Limitations
 
- The model may not generalize well to domains outside the fine-tuning dataset.  

- Quantization may result in minor accuracy degradation compared to full-precision models.  
 
## Contributing
 
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.