ayushsinha commited on
Commit
e0972ee
Β·
verified Β·
1 Parent(s): d0316fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -9
README.md CHANGED
@@ -1,13 +1,92 @@
1
  Pythia Quantized Model for Sentiment Analysis
2
- This repository hosts a quantized version of the Pythia model, fine-tuned for sentiment analysis tasks.
3
- The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable
4
- for resource-constrained environments.
 
5
 
6
  Model Details
7
- Model Architecture: Pythia
8
- Task: Sentiment Analysis
9
- Dataset: Twitter Tweets
10
- Quantization: FP16
11
 
12
- Fine-tuning Framework: Hugging Face Transformers
13
- The quantized model achieves comparable performance to its full-precision counterpart while significantly reducing memory usage and inference latency.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  Pythia Quantized Model for Sentiment Analysis
2
+ =============================================
3
+ This repository hosts a quantized version of the Pythia model, fine-tuned for sentiment analysis tasks.
4
+ The model has been optimized for efficient deployment while maintaining high accuracy, making it suitable for
5
+ resource-constrained environments.
6
 
7
  Model Details
8
+ -------------
 
 
 
9
 
10
+ * **Developed By:** AventIQ-AI
11
+ * **Model Architecture:** Pythia-410m
12
+ * **Task:** Sentiment Analysis
13
+ * **Dataset:** IMDb Reviews
14
+ * **Quantization:** Float16
15
+ * **Fine-tuning Framework:** Hugging Face Transformers
16
+
17
+ The quantized model achieves comparable performance to the full-precision model while reducing memory usage and inference time.
18
+
19
+ Usage
20
+ -----
21
+
22
+ ### Installation
23
+
24
+ pip install transformers torch
25
+
26
+ ### Loading the Model
27
+
28
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
29
+
30
+ tokenizer = AutoTokenizer.from_pretrained("AventIQ-AI/pythia-410m")
31
+ model = AutoModelForSequenceClassification.from_pretrained("AventIQ-AI/pythia-410m")
32
+
33
+ # Example usage
34
+ text = "This product is amazing!"
35
+ inputs = tokenizer(text, return_tensors="pt")
36
+ outputs = model(**inputs)
37
+ logits = outputs.logits
38
+ predicted_class = logits.argmax().item()
39
+ print("Predicted class:", predicted_class)
40
+
41
+ Performance Metrics
42
+ -------------------
43
+
44
+ * **Accuracy:** 0.56
45
+ * **F1 Score:** 0.56
46
+ * **Precision:** 0.68
47
+ * **Recall:** 0.56
48
+
49
+ Fine-Tuning Details
50
+ -------------------
51
+
52
+ ### Dataset
53
+
54
+ The IMDb Reviews dataset was used, containing both positive and negative sentiment examples.
55
+
56
+ ### Training
57
+
58
+ * Number of epochs: 3
59
+ * Batch size: 8
60
+ * evaluation_strategy= epoch
61
+ * Learning rate: 2e-5
62
+
63
+ ### Quantization
64
+
65
+ Post-training quantization was applied using PyTorch's built-in quantization framework to reduce the model size and improve inference efficiency.
66
+
67
+ Repository Structure
68
+ --------------------
69
+
70
+ .
71
+ β”œβ”€β”€ model/ # Contains the quantized model files
72
+ β”œβ”€β”€ tokenizer/ # Tokenizer configuration and vocabulary files
73
+ β”œβ”€β”€ model.safensors/ # Fine Tuned Model
74
+ β”œβ”€β”€ README.md # Model documentation
75
+ └── LICENSE # License for the repository
76
+
77
+ Limitations
78
+ -----------
79
+
80
+ * The model may not generalize well to domains outside the fine-tuning dataset.
81
+ * Quantization may result in minor accuracy degradation compared to full-precision models.
82
+
83
+
84
+ License
85
+ -------
86
+
87
+ This project is licensed under the Apache License 2.0. See the LICENSE file for more details.
88
+
89
+ Contributing
90
+ ------------
91
+
92
+ Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.