File size: 3,568 Bytes
7b34234 710c14c 2286109 7b34234 33a52fc 3802374 7b34234 3802374 7b34234 3802374 7b34234 3802374 7b34234 706d11b 7b34234 3802374 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
# π§ SentimentClassifier-RoBERTa-UserReviews
A RoBERTa-based sentiment analysis model fine-tuned on user review data. This model classifies reviews as **Positive** or **Negative**, making it ideal for analyzing product feedback, customer reviews, and other short user-generated content.
---
## β¨ Model Highlights
π Based on `cardiffnlp/twitter-roberta-base-sentiment` (from Cardiff NLP)
π Fine-tuned on binary-labeled user reviews (positive vs. negative)
β‘ Supports prediction of 2 classes: Positive, Negative
π§ Built using Hugging Face π€ Transformers and PyTorch
---
## π§ Intended Uses
- β
Customer review sentiment classification
- β
E-commerce product feedback analysis
- β
App review categorization
---
## π« Limitations
- β Not optimized for multi-class sentiment (Neutral, Sarcasm, etc.)
- π Trained primarily on English-language reviews
- π Performance may degrade for texts >128 tokens (due to max length truncation)
- π€ Not designed for domain-specific jargon (e.g., legal or medical texts)
---
## ποΈββοΈ Training Details
| Attribute | Value |
|-------------------|----------------------------------------|
| Base Model | cardiffnlp/twitter-roberta-base-sentiment |
| Dataset | Filtered user reviews (binary labeled) |
| Labels | Positive (1), Negative (0) |
| Max Token Length | 128 |
| Epochs | 3 |
| Batch Size | 8 |
| Optimizer | AdamW |
| Loss Function | CrossEntropyLoss |
| Framework | PyTorch + Hugging Face Transformers |
| Hardware | CUDA-enabled GPU |
---
## π Evaluation Metrics
| Metric | Score |
|------------|--------|
| Accuracy | 0.97 |
| Precision | 0.96 |
| Recall | 1.00 |
| F1 Score | 0.98 |
> π Replace with your final values after complete training if these were updated.
---
## π Label Mapping
| Label ID | Sentiment |
|----------|-----------|
| 0 | Negative |
| 1 | Positive |
---
## π Usage
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F
model_name = "your-username/sentiment-roberta-user-reviews"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()
def predict(text):
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
with torch.no_grad():
outputs = model(**inputs)
probs = F.softmax(outputs.logits, dim=1)
pred = torch.argmax(probs, dim=1).item()
label_map = {0: "Negative", 1: "Positive"}
return f"Sentiment: {label_map[pred]} (Confidence: {probs[0][pred]:.2f})"
# Example
print(predict("I really love this product, works great!"))
π Repository Structure
python
Copy
Edit
.
βββ model/ # Contains fine-tuned model files
βββ tokenizer/ # Tokenizer config and vocab
βββ config.json # Model configuration
βββ pytorch_model.bin # Fine-tuned model weights
βββ README.md # Model card
π€ Contributing
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.
|