File size: 3,568 Bytes
7b34234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
710c14c
 
 
2286109
7b34234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33a52fc
 
3802374
7b34234
3802374
 
7b34234
 
 
 
3802374
 
 
 
7b34234
3802374
 
7b34234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706d11b
7b34234
 
 
 
 
3802374
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# 🧠 SentimentClassifier-RoBERTa-UserReviews

A RoBERTa-based sentiment analysis model fine-tuned on user review data. This model classifies reviews as **Positive** or **Negative**, making it ideal for analyzing product feedback, customer reviews, and other short user-generated content.

---

## ✨ Model Highlights

πŸ“Œ Based on `cardiffnlp/twitter-roberta-base-sentiment` (from Cardiff NLP)  
πŸ” Fine-tuned on binary-labeled user reviews (positive vs. negative)  
⚑ Supports prediction of 2 classes: Positive, Negative  
🧠 Built using Hugging Face πŸ€— Transformers and PyTorch  

---

## 🧠 Intended Uses

- βœ… Customer review sentiment classification  
- βœ… E-commerce product feedback analysis  
- βœ… App review categorization  

---

## 🚫 Limitations

- ❌ Not optimized for multi-class sentiment (Neutral, Sarcasm, etc.)  
- 🌍 Trained primarily on English-language reviews  
- πŸ“ Performance may degrade for texts >128 tokens (due to max length truncation)  
- πŸ€” Not designed for domain-specific jargon (e.g., legal or medical texts)  

---

## πŸ‹οΈβ€β™‚οΈ Training Details

| Attribute         | Value                                 |
|-------------------|----------------------------------------|
| Base Model        | cardiffnlp/twitter-roberta-base-sentiment |
| Dataset           | Filtered user reviews (binary labeled) |
| Labels            | Positive (1), Negative (0)             |
| Max Token Length  | 128                                    |
| Epochs            | 3                                      |
| Batch Size        | 8                                      |
| Optimizer         | AdamW                                  |
| Loss Function     | CrossEntropyLoss                       |
| Framework         | PyTorch + Hugging Face Transformers    |
| Hardware          | CUDA-enabled GPU                       |

---

## πŸ“Š Evaluation Metrics

| Metric     | Score  |
|------------|--------|
| Accuracy   | 0.97  |
| Precision  | 0.96   |
| Recall     | 1.00  |
| F1 Score   | 0.98   |

> πŸ“Œ Replace with your final values after complete training if these were updated.

---

## πŸ”Ž Label Mapping

| Label ID | Sentiment |
|----------|-----------|
| 0        | Negative  |
| 1        | Positive  |

---

## πŸš€ Usage

```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
import torch.nn.functional as F

model_name = "your-username/sentiment-roberta-user-reviews"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
model.eval()

def predict(text):
    inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=128)
    with torch.no_grad():
        outputs = model(**inputs)
        probs = F.softmax(outputs.logits, dim=1)
        pred = torch.argmax(probs, dim=1).item()
        label_map = {0: "Negative", 1: "Positive"}
        return f"Sentiment: {label_map[pred]} (Confidence: {probs[0][pred]:.2f})"

# Example
print(predict("I really love this product, works great!"))



πŸ“ Repository Structure
python
Copy
Edit
.
β”œβ”€β”€ model/               # Contains fine-tuned model files
β”œβ”€β”€ tokenizer/           # Tokenizer config and vocab
β”œβ”€β”€ config.json          # Model configuration
β”œβ”€β”€ pytorch_model.bin    # Fine-tuned model weights
β”œβ”€β”€ README.md            # Model card



🀝 Contributing
Contributions are welcome! Feel free to open an issue or submit a pull request if you have suggestions or improvements.