Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
# CodeT5 for Code Comment Generation
|
4 |
+
This is a CodeT5 model fine-tuned from Salesforce/codet5-base for generating natural language comments from Python code snippets. It maps code snippets to descriptive comments and can be used for automated code documentation, code understanding, or educational purposes.
|
5 |
+
|
6 |
+
# Model Details
|
7 |
+
**Model Description**
|
8 |
+
**Model Type:** Sequence-to-Sequence Transformer
|
9 |
+
**Base Model:** Salesforce/codet5-base
|
10 |
+
**Maximum Sequence Length:** 128 tokens (input and output)
|
11 |
+
**Output:** Natural language comments describing the input code
|
12 |
+
**Task:** Code-to-comment generation
|
13 |
+
|
14 |
+
# Model Sources
|
15 |
+
**Documentation:** CodeT5 Documentation
|
16 |
+
**Repository:** CodeT5 on GitHub
|
17 |
+
**Hugging Face:** CodeT5 on Hugging Face
|
18 |
+
|
19 |
+
# Full Model Architecture
|
20 |
+
```
|
21 |
+
T5ForConditionalGeneration(
|
22 |
+
(shared): Embedding(32100, 768)
|
23 |
+
(encoder): T5Stack(
|
24 |
+
(embed_tokens): Embedding(32100, 768)
|
25 |
+
(block): ModuleList(...)
|
26 |
+
(final_layer_norm): LayerNorm((768,), eps=1e-12)
|
27 |
+
(dropout): Dropout(p=0.1)
|
28 |
+
)
|
29 |
+
(decoder): T5Stack(
|
30 |
+
(embed_tokens): Embedding(32100, 768)
|
31 |
+
(block): ModuleList(...)
|
32 |
+
(final_layer_norm): LayerNorm((768,), eps=1e-12)
|
33 |
+
(dropout): Dropout(p=0.1)
|
34 |
+
)
|
35 |
+
(lm_head): Linear(in_features=768, out_features=32100, bias=False)
|
36 |
+
)
|
37 |
+
```
|
38 |
+
|
39 |
+
pip install -U transformers torch datasets
|
40 |
+
Then, load the model and run inference:
|
41 |
+
|
42 |
+
```
|
43 |
+
from transformers import T5ForConditionalGeneration, RobertaTokenizer
|
44 |
+
|
45 |
+
# Download from the 🤗 Hub (replace with your model ID after uploading)
|
46 |
+
model_name = "your-username/codet5-conala-comments" # Update with your HF model ID
|
47 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
48 |
+
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
49 |
+
|
50 |
+
# Move to GPU if available
|
51 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
52 |
+
model.to(device)
|
53 |
+
|
54 |
+
# Inference
|
55 |
+
code_snippet = "sum(d * 10 ** i for i, d in enumerate(x[::-1]))"
|
56 |
+
inputs = tokenizer(code_snippet, max_length=128, truncation=True, padding="max_length", return_tensors="pt").to(device)
|
57 |
+
outputs = model.generate(
|
58 |
+
input_ids=inputs["input_ids"],
|
59 |
+
attention_mask=inputs["attention_mask"],
|
60 |
+
max_length=128,
|
61 |
+
num_beams=4,
|
62 |
+
early_stopping=True
|
63 |
+
)
|
64 |
+
comment = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
65 |
+
print(f"Code: {code_snippet}")
|
66 |
+
print(f"Comment: {comment}")
|
67 |
+
# Expected output: Something close to "Concatenate elements of a list 'x' of multiple integers to a single integer"
|
68 |
+
|
69 |
+
```
|
70 |
+
# Training Details
|
71 |
+
Training Dataset
|
72 |
+
**Name:** janrauhl/conala
|
73 |
+
**Size:** 2,300 training samples, 477 validation samples
|
74 |
+
**Columns:** snippet (code), rewritten_intent (comment), intent, question_id
|
75 |
+
|
76 |
+
# Approximate Statistics (based on inspection):
|
77 |
+
```
|
78 |
+
snippet:
|
79 |
+
Type: string
|
80 |
+
Min length: ~10 tokens
|
81 |
+
Mean length: ~20-30 tokens (estimated)
|
82 |
+
Max length: ~100 tokens (before truncation)
|
83 |
+
rewritten_intent:
|
84 |
+
Type: string
|
85 |
+
Min length: ~5 tokens
|
86 |
+
Mean length: ~10-15 tokens (estimated)
|
87 |
+
Max length: ~50 tokens (before truncation)
|
88 |
+
Samples:
|
89 |
+
snippet: sum(d * 10 ** i for i, d in enumerate(x[::-1])), rewritten_intent: "Concatenate elements of a list 'x' of multiple integers to a single integer"
|
90 |
+
snippet: int(''.join(map(str, x))), rewritten_intent: "Convert a list of integers into a single integer"
|
91 |
+
snippet: datetime.strptime('2010-11-13 10:33:54.227806', '%Y-%m-%d %H:%M:%S.%f'), rewritten_intent: "Convert a DateTime string back to a DateTime object of format '%Y-%m-%d %H:%M:%S.%f'"
|
92 |
+
```
|
93 |
+
# Training Hyperparameters
|
94 |
+
Non-Default Hyperparameters:
|
95 |
+
**per_device_train_batch_size:** 4
|
96 |
+
**per_device_eval_batch_size:** 4
|
97 |
+
**gradient_accumulation_steps:** 2 (effective batch size = 8)
|
98 |
+
**num_train_epochs:** 10
|
99 |
+
**learning_rate:** 1e-4
|
100 |
+
**fp16:** True
|
101 |
+
|
102 |
+
```
|
103 |
+
@article{wang2021codet5,
|
104 |
+
title={CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation},
|
105 |
+
author={Wang, Yue and Wang, Weishi and Joty, Shafiq and Hoi, Steven C. H.},
|
106 |
+
journal={Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing},
|
107 |
+
year={2021},
|
108 |
+
url={https://arxiv.org/abs/2109.00859}
|
109 |
+
}
|
110 |
+
|
111 |
+
```
|