Update README.md
Browse files
README.md
CHANGED
|
@@ -5,9 +5,67 @@ This is a simple attempt. I trained with CIFAR-10 dataset.
|
|
| 5 |
## Usage
|
| 6 |
|
| 7 |
```python
|
| 8 |
-
|
| 9 |
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
```
|
|
|
|
| 5 |
## Usage
|
| 6 |
|
| 7 |
```python
|
| 8 |
+
# 生成图像有误...以下代码需修改!!!
|
| 9 |
|
| 10 |
+
import torch
|
| 11 |
+
from diffusers import DDPMPipeline, DDPMScheduler
|
| 12 |
+
from diffusers.models import UNet2DModel
|
| 13 |
+
from PIL import Image
|
| 14 |
+
import matplotlib.pyplot as plt
|
| 15 |
+
|
| 16 |
+
# 模型ID
|
| 17 |
+
model_id = "BackTo2014/DDPM-test"
|
| 18 |
+
|
| 19 |
+
# 检查设备
|
| 20 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 21 |
+
|
| 22 |
+
# 加载UNet模型和配置文件
|
| 23 |
+
try:
|
| 24 |
+
unet = UNet2DModel.from_pretrained(
|
| 25 |
+
model_id,
|
| 26 |
+
ignore_mismatched_sizes=True,
|
| 27 |
+
low_cpu_mem_usage=False,
|
| 28 |
+
).to(device) # 将模型移动到GPU上
|
| 29 |
+
except ValueError as e:
|
| 30 |
+
print(f"Error loading model: {e}")
|
| 31 |
+
|
| 32 |
+
# 获取模型的state_dict
|
| 33 |
+
state_dict = unet.state_dict()
|
| 34 |
+
|
| 35 |
+
# 手动初始化缺失的权重
|
| 36 |
+
for key in e.args[0].split(': ')[1].split(', '):
|
| 37 |
+
name, size = key.split('.')
|
| 38 |
+
size = tuple(map(int, size.replace(')', '').replace('(', '').split(',')))
|
| 39 |
+
|
| 40 |
+
# 创建随机权重
|
| 41 |
+
new_weight = torch.randn(size).to(device) # 将权重移动到GPU上
|
| 42 |
+
|
| 43 |
+
# 更新state_dict
|
| 44 |
+
state_dict[name] = new_weight
|
| 45 |
+
|
| 46 |
+
# 加载更新后的state_dict
|
| 47 |
+
unet.load_state_dict(state_dict).to(device) # 将模型移动到GPU上
|
| 48 |
+
|
| 49 |
+
# 如果sample_size未定义,则手动设置
|
| 50 |
+
if unet.config.sample_size is None:
|
| 51 |
+
# 假设样本尺寸为 32x32
|
| 52 |
+
unet.config.sample_size = (32, 32)
|
| 53 |
+
|
| 54 |
+
# 初始化Scheduler
|
| 55 |
+
scheduler = DDPMScheduler.from_config(model_id)
|
| 56 |
+
|
| 57 |
+
# 创建DDPMPipeline
|
| 58 |
+
pipeline = DDPMPipeline(unet=unet, scheduler=scheduler)
|
| 59 |
+
|
| 60 |
+
# 生成图像
|
| 61 |
+
generator = torch.manual_seed(0)
|
| 62 |
+
image = pipeline(num_inference_steps=1000, generator=generator).images[0]
|
| 63 |
+
|
| 64 |
+
# 使用matplotlib显示图像
|
| 65 |
+
plt.imshow(image)
|
| 66 |
+
plt.axis('off') # 不显示坐标轴
|
| 67 |
+
plt.show()
|
| 68 |
+
|
| 69 |
+
# 保存图像
|
| 70 |
+
image.save("generated_image.png")
|
| 71 |
```
|