Update preprocessing.py
Browse files- preprocessing.py +105 -0
preprocessing.py
CHANGED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Preprocessing script for DICOM medical images
|
3 |
+
"""
|
4 |
+
import os
|
5 |
+
import numpy as np
|
6 |
+
import pydicom
|
7 |
+
import cv2
|
8 |
+
from glob import glob
|
9 |
+
from tqdm import tqdm
|
10 |
+
import argparse
|
11 |
+
|
12 |
+
def apply_window_level(image, window_center, window_width):
|
13 |
+
"""
|
14 |
+
Apply windowing to the DICOM image to enhance visualization
|
15 |
+
|
16 |
+
Args:
|
17 |
+
image (numpy.ndarray): Input image
|
18 |
+
window_center (float): Window center (level)
|
19 |
+
window_width (float): Window width
|
20 |
+
|
21 |
+
Returns:
|
22 |
+
numpy.ndarray: Windowed image
|
23 |
+
"""
|
24 |
+
img_min = window_center - window_width // 2
|
25 |
+
img_max = window_center + window_width // 2
|
26 |
+
|
27 |
+
windowed = np.clip(image, img_min, img_max)
|
28 |
+
windowed = (windowed - img_min) / (img_max - img_min) * 255.0
|
29 |
+
|
30 |
+
return windowed.astype(np.uint8)
|
31 |
+
|
32 |
+
def process_dicom_files(input_dir, output_dir):
|
33 |
+
"""
|
34 |
+
Process all DICOM files in the input directory
|
35 |
+
|
36 |
+
Args:
|
37 |
+
input_dir (str): Directory containing DICOM files
|
38 |
+
output_dir (str): Directory to save processed images
|
39 |
+
"""
|
40 |
+
# Create output directories
|
41 |
+
os.makedirs(output_dir, exist_ok=True)
|
42 |
+
images_dir = os.path.join(output_dir, "images")
|
43 |
+
os.makedirs(images_dir, exist_ok=True)
|
44 |
+
|
45 |
+
# Find all DICOM files
|
46 |
+
dicom_files = glob(os.path.join(input_dir, "**", "*.dcm"), recursive=True)
|
47 |
+
print(f"Found {len(dicom_files)} DICOM files")
|
48 |
+
|
49 |
+
# Process each file
|
50 |
+
for i, dicom_path in enumerate(tqdm(dicom_files, desc="Processing DICOM files")):
|
51 |
+
try:
|
52 |
+
# Read DICOM file
|
53 |
+
dicom = pydicom.dcmread(dicom_path)
|
54 |
+
|
55 |
+
# Extract image data
|
56 |
+
image = dicom.pixel_array
|
57 |
+
|
58 |
+
# Apply windowing if available
|
59 |
+
if hasattr(dicom, 'WindowCenter') and hasattr(dicom, 'WindowWidth'):
|
60 |
+
window_center = dicom.WindowCenter
|
61 |
+
window_width = dicom.WindowWidth
|
62 |
+
|
63 |
+
# Handle multiple window values
|
64 |
+
if isinstance(window_center, pydicom.multival.MultiValue):
|
65 |
+
window_center = window_center[0]
|
66 |
+
if isinstance(window_width, pydicom.multival.MultiValue):
|
67 |
+
window_width = window_width[0]
|
68 |
+
|
69 |
+
image = apply_window_level(image, window_center, window_width)
|
70 |
+
else:
|
71 |
+
# Apply default windowing for CT images
|
72 |
+
if dicom.Modality == "CT":
|
73 |
+
image = apply_window_level(image, 40, 400) # Soft tissue window
|
74 |
+
else:
|
75 |
+
# Normalize to 0-255 range
|
76 |
+
image = ((image - image.min()) / (image.max() - image.min() + 1e-8) * 255).astype(np.uint8)
|
77 |
+
|
78 |
+
# Generate output filename
|
79 |
+
patient_id = dicom.PatientID if hasattr(dicom, 'PatientID') else "unknown"
|
80 |
+
series_uid = dicom.SeriesInstanceUID if hasattr(dicom, 'SeriesInstanceUID') else "unknown"
|
81 |
+
instance_uid = dicom.SOPInstanceUID if hasattr(dicom, 'SOPInstanceUID') else str(i)
|
82 |
+
|
83 |
+
output_filename = f"{patient_id}_{series_uid[-8:]}_{instance_uid[-8:]}.png"
|
84 |
+
output_path = os.path.join(images_dir, output_filename)
|
85 |
+
|
86 |
+
# Save image
|
87 |
+
cv2.imwrite(output_path, image)
|
88 |
+
|
89 |
+
# Save metadata
|
90 |
+
with open(os.path.join(output_dir, "metadata.txt"), "a") as f:
|
91 |
+
f.write(f"{output_filename},{dicom_path}\n")
|
92 |
+
|
93 |
+
except Exception as e:
|
94 |
+
print(f"Error processing {dicom_path}: {e}")
|
95 |
+
|
96 |
+
print(f"Processing complete. Processed images saved to {images_dir}")
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
parser = argparse.ArgumentParser(description='Process DICOM files')
|
100 |
+
parser.add_argument('--input', type=str, required=True, help='Input directory with DICOM files')
|
101 |
+
parser.add_argument('--output', type=str, default='./processed_data', help='Output directory')
|
102 |
+
|
103 |
+
args = parser.parse_args()
|
104 |
+
|
105 |
+
process_dicom_files(args.input, args.output)
|