End of training
Browse files- README.md +63 -0
- emissions.csv +2 -0
- metrics.json +9 -0
README.md
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
base_model: microsoft/codebert-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
model-index:
|
10 |
+
- name: vuln-patch-cwe-guesser-model-microsoft-codebert-base
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# vuln-patch-cwe-guesser-model-microsoft-codebert-base
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [microsoft/codebert-base](https://huggingface.co/microsoft/codebert-base) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 4.2765
|
22 |
+
- Accuracy: 0.2614
|
23 |
+
- F1: 0.0104
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 3e-05
|
43 |
+
- train_batch_size: 32
|
44 |
+
- eval_batch_size: 32
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- num_epochs: 1
|
49 |
+
- label_smoothing_factor: 0.1
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
|
55 |
+
| 4.713 | 1.0 | 25 | 4.2765 | 0.2614 | 0.0104 |
|
56 |
+
|
57 |
+
|
58 |
+
### Framework versions
|
59 |
+
|
60 |
+
- Transformers 4.55.0
|
61 |
+
- Pytorch 2.7.1+cu126
|
62 |
+
- Datasets 4.0.0
|
63 |
+
- Tokenizers 0.21.2
|
emissions.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
2 |
+
2025-08-11T09:41:07,codecarbon,c7946fe2-006d-49c1-87e3-8e64888f7f4f,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,12.5743139218539,0.00022532905383394798,1.791978912203955e-05,42.5,476.50199247942726,94.34468364715576,0.000148328986798232,0.0016630429970234673,0.00032925723854464,0.002140629222366339,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
|
metrics.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"eval_loss": 4.276517868041992,
|
3 |
+
"eval_accuracy": 0.26136363636363635,
|
4 |
+
"eval_f1": 0.01036036036036036,
|
5 |
+
"eval_runtime": 0.4791,
|
6 |
+
"eval_samples_per_second": 183.688,
|
7 |
+
"eval_steps_per_second": 6.262,
|
8 |
+
"epoch": 1.0
|
9 |
+
}
|