cedricbonhomme commited on
Commit
7b79213
·
verified ·
1 Parent(s): f7f3478

End of training

Browse files
Files changed (3) hide show
  1. README.md +25 -42
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,50 +1,37 @@
1
  ---
2
- base_model: hfl/chinese-macbert-base
3
- datasets:
4
- - CIRCL/Vulnerability-CNVD
5
  library_name: transformers
6
  license: apache-2.0
7
- metrics:
8
- - accuracy
9
  tags:
10
  - generated_from_trainer
11
- - text-classification
12
- - classification
13
- - nlp
14
- - chinese
15
- - vulnerability
16
- pipeline_tag: text-classification
17
- language: zh
18
  model-index:
19
  - name: vulnerability-severity-classification-chinese-macbert-base
20
  results: []
21
  ---
22
 
23
- # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Chinese Text)
 
24
 
25
- This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the dataset [CIRCL/Vulnerability-CNVD](https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD).
26
 
27
- For more information, visit the [Vulnerability-Lookup project page](https://vulnerability.circl.lu) or the [ML-Gateway GitHub repository](https://github.com/vulnerability-lookup/ML-Gateway), which demonstrates its usage in a FastAPI server.
 
 
 
28
 
 
29
 
30
- ## How to use
31
 
32
- You can use this model directly with the Hugging Face `transformers` library for text classification:
33
 
34
- ```python
35
- from transformers import pipeline
36
 
37
- classifier = pipeline(
38
- "text-classification",
39
- model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
40
- )
41
 
42
- # Example usage for a Chinese vulnerability description
43
- description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
44
- result_chinese = classifier(description_chinese)
45
- print(result_chinese)
46
- # Expected output example: [{'label': '高', 'score': 0.9802}]
47
- ```
48
 
49
  ## Training procedure
50
 
@@ -59,24 +46,20 @@ The following hyperparameters were used during training:
59
  - lr_scheduler_type: linear
60
  - num_epochs: 5
61
 
62
- It achieves the following results on the evaluation set:
63
- - Loss: 0.5994
64
- - Accuracy: 0.7858
65
-
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
70
- | 0.6543 | 1.0 | 3465 | 0.5870 | 0.7529 |
71
- | 0.5973 | 2.0 | 6930 | 0.5463 | 0.7736 |
72
- | 0.4937 | 3.0 | 10395 | 0.5417 | 0.7841 |
73
- | 0.448 | 4.0 | 13860 | 0.5541 | 0.7884 |
74
- | 0.3624 | 5.0 | 17325 | 0.5994 | 0.7858 |
75
 
76
 
77
  ### Framework versions
78
 
79
- - Transformers 4.56.1
80
- - Pytorch 2.8.0+cu128
81
- - Datasets 4.0.0
82
- - Tokenizers 0.22.0
 
1
  ---
 
 
 
2
  library_name: transformers
3
  license: apache-2.0
4
+ base_model: hfl/chinese-macbert-base
 
5
  tags:
6
  - generated_from_trainer
7
+ metrics:
8
+ - accuracy
 
 
 
 
 
9
  model-index:
10
  - name: vulnerability-severity-classification-chinese-macbert-base
11
  results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
16
 
17
+ # vulnerability-severity-classification-chinese-macbert-base
18
 
19
+ This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6044
22
+ - Accuracy: 0.7745
23
 
24
+ ## Model description
25
 
26
+ More information needed
27
 
28
+ ## Intended uses & limitations
29
 
30
+ More information needed
 
31
 
32
+ ## Training and evaluation data
 
 
 
33
 
34
+ More information needed
 
 
 
 
 
35
 
36
  ## Training procedure
37
 
 
46
  - lr_scheduler_type: linear
47
  - num_epochs: 5
48
 
 
 
 
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
53
+ | 0.6196 | 1.0 | 3491 | 0.5932 | 0.7498 |
54
+ | 0.4754 | 2.0 | 6982 | 0.5667 | 0.7699 |
55
+ | 0.4553 | 3.0 | 10473 | 0.5629 | 0.7751 |
56
+ | 0.4466 | 4.0 | 13964 | 0.5712 | 0.7747 |
57
+ | 0.3432 | 5.0 | 17455 | 0.6044 | 0.7745 |
58
 
59
 
60
  ### Framework versions
61
 
62
+ - Transformers 4.57.1
63
+ - Pytorch 2.9.0+cu128
64
+ - Datasets 4.3.0
65
+ - Tokenizers 0.22.1
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-10-06T06:47:09,codecarbon,15aeb803-7d38-4051-a214-da3130a4bed2,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,3953.308398708701,0.07718071857326264,1.9523070499248874e-05,42.5,315.5237593318902,94.34468507766725,0.04663262536316761,0.5830715406235214,0.10351376028619633,0.7332179262728844,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-11-03T14:17:36,codecarbon,b84a8a02-dd85-4fc9-9723-fad2fb407024,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,4057.219467197545,0.07834764905995083,1.9310675622403075e-05,42.5,287.81221377982945,94.34468507766725,0.0478636099206284,0.5901947890998542,0.10624538350472391,0.7443037825252066,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6e1fc12166f614820d201d5812952223f73e20d8e0ba9efcc03f66f7950e0998
3
  size 409103316
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ad1e9590761307587421cd470555d24e5650db6cd1aaa55038b186d08d29384
3
  size 409103316