End of training
Browse files- README.md +25 -42
- emissions.csv +1 -1
- model.safetensors +1 -1
README.md
CHANGED
|
@@ -1,50 +1,37 @@
|
|
| 1 |
---
|
| 2 |
-
base_model: hfl/chinese-macbert-base
|
| 3 |
-
datasets:
|
| 4 |
-
- CIRCL/Vulnerability-CNVD
|
| 5 |
library_name: transformers
|
| 6 |
license: apache-2.0
|
| 7 |
-
|
| 8 |
-
- accuracy
|
| 9 |
tags:
|
| 10 |
- generated_from_trainer
|
| 11 |
-
|
| 12 |
-
-
|
| 13 |
-
- nlp
|
| 14 |
-
- chinese
|
| 15 |
-
- vulnerability
|
| 16 |
-
pipeline_tag: text-classification
|
| 17 |
-
language: zh
|
| 18 |
model-index:
|
| 19 |
- name: vulnerability-severity-classification-chinese-macbert-base
|
| 20 |
results: []
|
| 21 |
---
|
| 22 |
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
|
| 27 |
-
|
|
|
|
|
|
|
|
|
|
| 28 |
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
|
| 34 |
-
|
| 35 |
-
from transformers import pipeline
|
| 36 |
|
| 37 |
-
|
| 38 |
-
"text-classification",
|
| 39 |
-
model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
|
| 40 |
-
)
|
| 41 |
|
| 42 |
-
|
| 43 |
-
description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
|
| 44 |
-
result_chinese = classifier(description_chinese)
|
| 45 |
-
print(result_chinese)
|
| 46 |
-
# Expected output example: [{'label': '高', 'score': 0.9802}]
|
| 47 |
-
```
|
| 48 |
|
| 49 |
## Training procedure
|
| 50 |
|
|
@@ -59,24 +46,20 @@ The following hyperparameters were used during training:
|
|
| 59 |
- lr_scheduler_type: linear
|
| 60 |
- num_epochs: 5
|
| 61 |
|
| 62 |
-
It achieves the following results on the evaluation set:
|
| 63 |
-
- Loss: 0.5994
|
| 64 |
-
- Accuracy: 0.7858
|
| 65 |
-
|
| 66 |
### Training results
|
| 67 |
|
| 68 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 69 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
| 70 |
-
| 0.
|
| 71 |
-
| 0.
|
| 72 |
-
| 0.
|
| 73 |
-
| 0.
|
| 74 |
-
| 0.
|
| 75 |
|
| 76 |
|
| 77 |
### Framework versions
|
| 78 |
|
| 79 |
-
- Transformers 4.
|
| 80 |
-
- Pytorch 2.
|
| 81 |
-
- Datasets 4.
|
| 82 |
-
- Tokenizers 0.22.
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
license: apache-2.0
|
| 4 |
+
base_model: hfl/chinese-macbert-base
|
|
|
|
| 5 |
tags:
|
| 6 |
- generated_from_trainer
|
| 7 |
+
metrics:
|
| 8 |
+
- accuracy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
model-index:
|
| 10 |
- name: vulnerability-severity-classification-chinese-macbert-base
|
| 11 |
results: []
|
| 12 |
---
|
| 13 |
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
|
| 17 |
+
# vulnerability-severity-classification-chinese-macbert-base
|
| 18 |
|
| 19 |
+
This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
|
| 20 |
+
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 0.6044
|
| 22 |
+
- Accuracy: 0.7745
|
| 23 |
|
| 24 |
+
## Model description
|
| 25 |
|
| 26 |
+
More information needed
|
| 27 |
|
| 28 |
+
## Intended uses & limitations
|
| 29 |
|
| 30 |
+
More information needed
|
|
|
|
| 31 |
|
| 32 |
+
## Training and evaluation data
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
## Training procedure
|
| 37 |
|
|
|
|
| 46 |
- lr_scheduler_type: linear
|
| 47 |
- num_epochs: 5
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
### Training results
|
| 50 |
|
| 51 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
| 52 |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
| 53 |
+
| 0.6196 | 1.0 | 3491 | 0.5932 | 0.7498 |
|
| 54 |
+
| 0.4754 | 2.0 | 6982 | 0.5667 | 0.7699 |
|
| 55 |
+
| 0.4553 | 3.0 | 10473 | 0.5629 | 0.7751 |
|
| 56 |
+
| 0.4466 | 4.0 | 13964 | 0.5712 | 0.7747 |
|
| 57 |
+
| 0.3432 | 5.0 | 17455 | 0.6044 | 0.7745 |
|
| 58 |
|
| 59 |
|
| 60 |
### Framework versions
|
| 61 |
|
| 62 |
+
- Transformers 4.57.1
|
| 63 |
+
- Pytorch 2.9.0+cu128
|
| 64 |
+
- Datasets 4.3.0
|
| 65 |
+
- Tokenizers 0.22.1
|
emissions.csv
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
-
2025-
|
|
|
|
| 1 |
timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
+
2025-11-03T14:17:36,codecarbon,b84a8a02-dd85-4fc9-9723-fad2fb407024,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,4057.219467197545,0.07834764905995083,1.9310675622403075e-05,42.5,287.81221377982945,94.34468507766725,0.0478636099206284,0.5901947890998542,0.10624538350472391,0.7443037825252066,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
|
model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 409103316
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7ad1e9590761307587421cd470555d24e5650db6cd1aaa55038b186d08d29384
|
| 3 |
size 409103316
|