File size: 2,034 Bytes
eea85a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: mit
library_name: scikit-learn
tags:
- regression
- linear-regression
- obesity
datasets:
- ObesityDataSet_raw_and_data_sinthetic.csv
model-index:
- name: Obesity Weight Prediction Model
  results:
  - task:
      type: regression
      name: Weight prediction (kg)
    dataset:
      name: ObesityDataSet_raw_and_data_sinthetic.csv
      type: tabular
    metrics:
    - type: mean_squared_error
      value: 511.55
    - type: r2
      value: 0.2777
---

# Obesity Weight Prediction Model — Linear Regression

## Overview
This model predicts a person’s **weight (kg)** based on **height (m)** and **age (years)** using a Linear Regression model from scikit-learn.  

---

## Training

| Detail | Value |
|--------|-------|
| Algorithm | `LinearRegression()` |
| Features | Height, Age |
| Target | Weight |
| Train/Test Split | 75% / 25% |
| Random State | 42 |
| Dataset | ObesityDataSet_raw_and_data_sinhtetic.csv |

---

## Performance

| Metric | Score |
|--------|-------|
| MSE (Mean Squared Error) | **511.55** |
| R^2 Score | **0.2777** |

These results indicate that height and age alone **do not fully explain** weight — important factors like diet, genetics, and exercise are missing.

---

## Visualization

Below is a scatter plot showing predicted vs true weights:

![True vs Predicted Weight](plot.png)

The wide spread around the regression line shows prediction uncertainty for heavier individuals.

---

## Limitations
- Only two features used → reduced explanatory power  
- Synthetic dataset — not reflective of real population variation  
- Performance not suitable for real-world medical decisions  

This model is intended for **educational use only**.

---
## Strengths
- Easy to interpret
- Fast and simple
- Good educational model

## Weaknesses
- Low accuracy
- Missing key health variables
- Not production-ready

## Citation 
- "Estimation of Obesity Levels Based On Eating Habits and Physical Condition ." UCI Machine Learning Repository, 2019, https://doi.org/10.24432/C5H31Z.