File size: 2,034 Bytes
eea85a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: mit
library_name: scikit-learn
tags:
- regression
- linear-regression
- obesity
datasets:
- ObesityDataSet_raw_and_data_sinthetic.csv
model-index:
- name: Obesity Weight Prediction Model
results:
- task:
type: regression
name: Weight prediction (kg)
dataset:
name: ObesityDataSet_raw_and_data_sinthetic.csv
type: tabular
metrics:
- type: mean_squared_error
value: 511.55
- type: r2
value: 0.2777
---
# Obesity Weight Prediction Model — Linear Regression
## Overview
This model predicts a person’s **weight (kg)** based on **height (m)** and **age (years)** using a Linear Regression model from scikit-learn.
---
## Training
| Detail | Value |
|--------|-------|
| Algorithm | `LinearRegression()` |
| Features | Height, Age |
| Target | Weight |
| Train/Test Split | 75% / 25% |
| Random State | 42 |
| Dataset | ObesityDataSet_raw_and_data_sinhtetic.csv |
---
## Performance
| Metric | Score |
|--------|-------|
| MSE (Mean Squared Error) | **511.55** |
| R^2 Score | **0.2777** |
These results indicate that height and age alone **do not fully explain** weight — important factors like diet, genetics, and exercise are missing.
---
## Visualization
Below is a scatter plot showing predicted vs true weights:

The wide spread around the regression line shows prediction uncertainty for heavier individuals.
---
## Limitations
- Only two features used → reduced explanatory power
- Synthetic dataset — not reflective of real population variation
- Performance not suitable for real-world medical decisions
This model is intended for **educational use only**.
---
## Strengths
- Easy to interpret
- Fast and simple
- Good educational model
## Weaknesses
- Low accuracy
- Missing key health variables
- Not production-ready
## Citation
- "Estimation of Obesity Levels Based On Eating Habits and Physical Condition ." UCI Machine Learning Repository, 2019, https://doi.org/10.24432/C5H31Z.
|