JosephusCheung commited on
Commit
717c99d
·
1 Parent(s): d55f6e3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -8
README.md CHANGED
@@ -34,10 +34,6 @@ tags:
34
 
35
  *Image drawn by GPT-4 DALL·E 3* TL;DR: Perhaps this 7B model, better than all existing models <= 33B, in most quantitative evaluations...
36
 
37
- # Please Stop Using WRONG unofficial quant models unless you know what you're doing
38
-
39
- GPTQ quants require a good dataset for calibration, and the default C4 dataset is not capable.
40
-
41
  **llama.cpp GGUF models**
42
  GPT2Tokenizer fixed by [Kerfuffle](https://github.com/KerfuffleV2) on [https://github.com/ggerganov/llama.cpp/pull/3743](https://github.com/ggerganov/llama.cpp/pull/3743), new models are reuploaded.
43
 
@@ -72,7 +68,7 @@ other ACC: 70.04
72
 
73
  social ACC: 72.41
74
 
75
- **AVERAGE ACC:63.82** (Outperforms / Equal to the best Mistral-7B Chat-style fine-tunes, and ALL other models under 33B.)
76
 
77
  ## CEval (Val):
78
  STEM acc: 61.67
@@ -85,7 +81,7 @@ Other acc: 68.35
85
 
86
  Hard acc:48.03
87
 
88
- **AVERAGE acc:70.27** (Outperforms ALL 7B models currently.)
89
 
90
  ## GSM8K
91
 
@@ -126,7 +122,7 @@ STEM准确率:56.83
126
 
127
  社会学准确率:72.41
128
 
129
- **平均准确率:63.82** (优于/平于最好的 Mistral-7B 聊天格式的微调,和其余的33B及以下模型。)
130
 
131
  ## CEval(验证集):
132
  STEM准确率:61.67
@@ -139,7 +135,7 @@ STEM准确率:61.67
139
 
140
  困难准确率:48.03
141
 
142
- **平均准确率:70.27** (优于当前所有7B模型。)
143
 
144
  ## GSM8K
145
 
 
34
 
35
  *Image drawn by GPT-4 DALL·E 3* TL;DR: Perhaps this 7B model, better than all existing models <= 33B, in most quantitative evaluations...
36
 
 
 
 
 
37
  **llama.cpp GGUF models**
38
  GPT2Tokenizer fixed by [Kerfuffle](https://github.com/KerfuffleV2) on [https://github.com/ggerganov/llama.cpp/pull/3743](https://github.com/ggerganov/llama.cpp/pull/3743), new models are reuploaded.
39
 
 
68
 
69
  social ACC: 72.41
70
 
71
+ **AVERAGE ACC:63.82** (Outperforms / Equal to the best Mistral-7B Chat-style fine-tunes, ChatGLM3-6B and ALL other models under 33B.)
72
 
73
  ## CEval (Val):
74
  STEM acc: 61.67
 
81
 
82
  Hard acc:48.03
83
 
84
+ **AVERAGE acc:70.27** (Outperforms ALL 7B models currently, including ChatGLM3-6B.)
85
 
86
  ## GSM8K
87
 
 
122
 
123
  社会学准确率:72.41
124
 
125
+ **平均准确率:63.82** (优于/平于最好的 Mistral-7B 聊天格式的微调,ChatGLM3-6B 和其余的33B及以下模型。)
126
 
127
  ## CEval(验证集):
128
  STEM准确率:61.67
 
135
 
136
  困难准确率:48.03
137
 
138
+ **平均准确率:70.27** (优于当前所有7B模型,包括 ChatGLM3-6B)
139
 
140
  ## GSM8K
141