File size: 4,321 Bytes
3569ac3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
from PIL import Image
from IPython.display import display
import torch as th
import torch.nn as nn

from clip.model_creation import create_clip_model
from download import load_checkpoint
from create_model import (
    create_model_and_diffusion,
    model_and_diffusion_defaults,
    model_and_diffusion_defaults_upsampler,
)
from tokenizer.simple_tokenizer import SimpleTokenizer

has_cuda = th.cuda.is_available()
device = th.device('cpu' if not has_cuda else 'cuda')


options = model_and_diffusion_defaults()
options['use_fp16'] = has_cuda
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
model, diffusion = create_model_and_diffusion(**options)
model.eval()
if has_cuda:
    model.convert_to_fp16()
model.to(device)
model.load_state_dict(load_checkpoint('base', device))
print('total base parameters', sum(x.numel() for x in model.parameters()))


options_up = model_and_diffusion_defaults_upsampler()
options_up['use_fp16'] = has_cuda
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
model_up, diffusion_up = create_model_and_diffusion(**options_up)
model_up.eval()
if has_cuda:
    model_up.convert_to_fp16()
model_up.to(device)
model_up.load_state_dict(load_checkpoint('upsample', device))
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))

def show_images(batch: th.Tensor):
    """ Display a batch of images inline. """
    scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
    reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
    image = Image.fromarray(reshaped.numpy())
    image.show()


prompt = "an oil painting of a corgi"
batch_size = 1
guidance_scale = 3.0

# Tune this parameter to control the sharpness of 256x256 images.
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
upsample_temp = 0.997


# Create the text tokens to feed to the model.
tokens = model.tokenizer.encode(prompt)
tokens, mask = model.tokenizer.padded_tokens_and_mask(
    tokens, options['text_ctx']
)

# Create the classifier-free guidance tokens (empty)
full_batch_size = batch_size * 2
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
    [], options['text_ctx']
)

# Pack the tokens together into model kwargs.
model_kwargs = dict(
    tokens=th.tensor(
        [tokens] * batch_size + [uncond_tokens] * batch_size, device=device
    ),
    mask=th.tensor(
        [mask] * batch_size + [uncond_mask] * batch_size,
        dtype=th.bool,
        device=device,
    ),
)

# Create a classifier-free guidance sampling function
def model_fn(x_t, ts, **kwargs):
    half = x_t[: len(x_t) // 2]
    combined = th.cat([half, half], dim=0)
    model_out = model(combined, ts, **kwargs)
    eps, rest = model_out[:, :3], model_out[:, 3:]
    cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
    half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
    eps = th.cat([half_eps, half_eps], dim=0)
    return th.cat([eps, rest], dim=1)

# Sample from the base model.
model.del_cache()
samples = diffusion.p_sample_loop(
    model_fn,
    (full_batch_size, 3, options["image_size"], options["image_size"]),
    device=device,
    clip_denoised=True,
    progress=True,
    model_kwargs=model_kwargs,
    cond_fn=None,
)[:batch_size]
model.del_cache()

# Show the output
show_images(samples)


tokens = model_up.tokenizer.encode(prompt)
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
    tokens, options_up['text_ctx']
)

# Create the model conditioning dict.
model_kwargs = dict(
    # Low-res image to upsample.
    low_res=((samples+1)*127.5).round()/127.5 - 1,

    # Text tokens
    tokens=th.tensor(
        [tokens] * batch_size, device=device
    ),
    mask=th.tensor(
        [mask] * batch_size,
        dtype=th.bool,
        device=device,
    ),
)

# Sample from the base model.
model_up.del_cache()
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
up_samples = diffusion_up.ddim_sample_loop(
    model_up,
    up_shape,
    noise=th.randn(up_shape, device=device) * upsample_temp,
    device=device,
    clip_denoised=True,
    progress=True,
    model_kwargs=model_kwargs,
    cond_fn=None,
)[:batch_size]
model_up.del_cache()

# Show the output
show_images(up_samples)