|
""" |
|
Simplified from https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/gaussian_diffusion.py. |
|
""" |
|
|
|
import math |
|
|
|
import numpy as np |
|
import torch as th |
|
|
|
|
|
def _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, warmup_frac): |
|
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) |
|
warmup_time = int(num_diffusion_timesteps * warmup_frac) |
|
betas[:warmup_time] = np.linspace(beta_start, beta_end, warmup_time, dtype=np.float64) |
|
return betas |
|
|
|
|
|
def get_beta_schedule(beta_schedule, *, beta_start, beta_end, num_diffusion_timesteps): |
|
""" |
|
This is the deprecated API for creating beta schedules. |
|
|
|
See get_named_beta_schedule() for the new library of schedules. |
|
""" |
|
if beta_schedule == "quad": |
|
betas = ( |
|
np.linspace( |
|
beta_start ** 0.5, |
|
beta_end ** 0.5, |
|
num_diffusion_timesteps, |
|
dtype=np.float64, |
|
) |
|
** 2 |
|
) |
|
elif beta_schedule == "linear": |
|
betas = np.linspace(beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64) |
|
elif beta_schedule == "warmup10": |
|
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.1) |
|
elif beta_schedule == "warmup50": |
|
betas = _warmup_beta(beta_start, beta_end, num_diffusion_timesteps, 0.5) |
|
elif beta_schedule == "const": |
|
betas = beta_end * np.ones(num_diffusion_timesteps, dtype=np.float64) |
|
elif beta_schedule == "jsd": |
|
betas = 1.0 / np.linspace( |
|
num_diffusion_timesteps, 1, num_diffusion_timesteps, dtype=np.float64 |
|
) |
|
else: |
|
raise NotImplementedError(beta_schedule) |
|
assert betas.shape == (num_diffusion_timesteps,) |
|
return betas |
|
|
|
|
|
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps): |
|
""" |
|
Get a pre-defined beta schedule for the given name. |
|
|
|
The beta schedule library consists of beta schedules which remain similar |
|
in the limit of num_diffusion_timesteps. |
|
Beta schedules may be added, but should not be removed or changed once |
|
they are committed to maintain backwards compatibility. |
|
""" |
|
if schedule_name == "linear": |
|
|
|
|
|
scale = 1000 / num_diffusion_timesteps |
|
return get_beta_schedule( |
|
"linear", |
|
beta_start=scale * 0.0001, |
|
beta_end=scale * 0.02, |
|
num_diffusion_timesteps=num_diffusion_timesteps, |
|
) |
|
elif schedule_name == "squaredcos_cap_v2": |
|
return betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, |
|
) |
|
else: |
|
raise NotImplementedError(f"unknown beta schedule: {schedule_name}") |
|
|
|
|
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, |
|
which defines the cumulative product of (1-beta) over time from t = [0,1]. |
|
|
|
:param num_diffusion_timesteps: the number of betas to produce. |
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and |
|
produces the cumulative product of (1-beta) up to that |
|
part of the diffusion process. |
|
:param max_beta: the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
""" |
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) |
|
return np.array(betas) |
|
|
|
|
|
class GaussianDiffusion: |
|
""" |
|
Utilities for training and sampling diffusion models. |
|
|
|
Original ported from this codebase: |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 |
|
|
|
:param betas: a 1-D numpy array of betas for each diffusion timestep, |
|
starting at T and going to 1. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
*, |
|
betas, |
|
): |
|
|
|
betas = np.array(betas, dtype=np.float64) |
|
self.betas = betas |
|
assert len(betas.shape) == 1, "betas must be 1-D" |
|
assert (betas > 0).all() and (betas <= 1).all() |
|
|
|
self.num_timesteps = int(betas.shape[0]) |
|
|
|
alphas = 1.0 - betas |
|
self.alphas_cumprod = np.cumprod(alphas, axis=0) |
|
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) |
|
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) |
|
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) |
|
|
|
|
|
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) |
|
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) |
|
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) |
|
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) |
|
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) |
|
|
|
|
|
self.posterior_variance = ( |
|
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
self.posterior_log_variance_clipped = np.log( |
|
np.append(self.posterior_variance[1], self.posterior_variance[1:]) |
|
) |
|
self.posterior_mean_coef1 = ( |
|
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) |
|
) |
|
self.posterior_mean_coef2 = ( |
|
(1.0 - self.alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - self.alphas_cumprod) |
|
) |
|
|
|
def q_mean_variance(self, x_start, t): |
|
""" |
|
Get the distribution q(x_t | x_0). |
|
|
|
:param x_start: the [N x C x ...] tensor of noiseless inputs. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:return: A tuple (mean, variance, log_variance), all of x_start's shape. |
|
""" |
|
mean = _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) |
|
log_variance = _extract_into_tensor(self.log_one_minus_alphas_cumprod, t, x_start.shape) |
|
return mean, variance, log_variance |
|
|
|
def q_sample(self, x_start, t, noise=None): |
|
""" |
|
Diffuse the data for a given number of diffusion steps. |
|
|
|
In other words, sample from q(x_t | x_0). |
|
|
|
:param x_start: the initial data batch. |
|
:param t: the number of diffusion steps (minus 1). Here, 0 means one step. |
|
:param noise: if specified, the split-out normal noise. |
|
:return: A noisy version of x_start. |
|
""" |
|
if noise is None: |
|
noise = th.randn_like(x_start) |
|
assert noise.shape == x_start.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start |
|
+ _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise |
|
) |
|
|
|
def q_posterior_mean_variance(self, x_start, x_t, t): |
|
""" |
|
Compute the mean and variance of the diffusion posterior: |
|
|
|
q(x_{t-1} | x_t, x_0) |
|
|
|
""" |
|
assert x_start.shape == x_t.shape |
|
posterior_mean = ( |
|
_extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start |
|
+ _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t |
|
) |
|
posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) |
|
posterior_log_variance_clipped = _extract_into_tensor( |
|
self.posterior_log_variance_clipped, t, x_t.shape |
|
) |
|
assert ( |
|
posterior_mean.shape[0] |
|
== posterior_variance.shape[0] |
|
== posterior_log_variance_clipped.shape[0] |
|
== x_start.shape[0] |
|
) |
|
return posterior_mean, posterior_variance, posterior_log_variance_clipped |
|
|
|
def p_mean_variance(self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None): |
|
""" |
|
Apply the model to get p(x_{t-1} | x_t), as well as a prediction of |
|
the initial x, x_0. |
|
|
|
:param model: the model, which takes a signal and a batch of timesteps |
|
as input. |
|
:param x: the [N x C x ...] tensor at time t. |
|
:param t: a 1-D Tensor of timesteps. |
|
:param clip_denoised: if True, clip the denoised signal into [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. Applies before |
|
clip_denoised. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict with the following keys: |
|
- 'mean': the model mean output. |
|
- 'variance': the model variance output. |
|
- 'log_variance': the log of 'variance'. |
|
- 'pred_xstart': the prediction for x_0. |
|
""" |
|
if model_kwargs is None: |
|
model_kwargs = {} |
|
|
|
B, C = x.shape[:2] |
|
assert t.shape == (B,) |
|
model_output = model(x, t, **model_kwargs) |
|
if isinstance(model_output, tuple): |
|
model_output, extra = model_output |
|
else: |
|
extra = None |
|
|
|
assert model_output.shape == (B, C * 2, *x.shape[2:]) |
|
model_output, model_var_values = th.split(model_output, C, dim=1) |
|
min_log = _extract_into_tensor(self.posterior_log_variance_clipped, t, x.shape) |
|
max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) |
|
|
|
frac = (model_var_values + 1) / 2 |
|
model_log_variance = frac * max_log + (1 - frac) * min_log |
|
model_variance = th.exp(model_log_variance) |
|
|
|
def process_xstart(x): |
|
if denoised_fn is not None: |
|
x = denoised_fn(x) |
|
if clip_denoised: |
|
return x.clamp(-1, 1) |
|
return x |
|
|
|
pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x, t=t, eps=model_output)) |
|
model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x, t=t) |
|
|
|
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape |
|
return { |
|
"mean": model_mean, |
|
"variance": model_variance, |
|
"log_variance": model_log_variance, |
|
"pred_xstart": pred_xstart, |
|
"extra": extra, |
|
} |
|
|
|
def _predict_xstart_from_eps(self, x_t, t, eps): |
|
assert x_t.shape == eps.shape |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t |
|
- _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps |
|
) |
|
|
|
def _predict_eps_from_xstart(self, x_t, t, pred_xstart): |
|
return ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - pred_xstart |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) |
|
|
|
def condition_mean(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute the mean for the previous step, given a function cond_fn that |
|
computes the gradient of a conditional log probability with respect to |
|
x. In particular, cond_fn computes grad(log(p(y|x))), and we want to |
|
condition on y. |
|
|
|
This uses the conditioning strategy from Sohl-Dickstein et al. (2015). |
|
""" |
|
gradient = cond_fn(x, t, **model_kwargs) |
|
new_mean = p_mean_var["mean"].float() + p_mean_var["variance"] * gradient.float() |
|
return new_mean |
|
|
|
def condition_score(self, cond_fn, p_mean_var, x, t, model_kwargs=None): |
|
""" |
|
Compute what the p_mean_variance output would have been, should the |
|
model's score function be conditioned by cond_fn. |
|
|
|
See condition_mean() for details on cond_fn. |
|
|
|
Unlike condition_mean(), this instead uses the conditioning strategy |
|
from Song et al (2020). |
|
""" |
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
|
|
eps = self._predict_eps_from_xstart(x, t, p_mean_var["pred_xstart"]) |
|
eps = eps - (1 - alpha_bar).sqrt() * cond_fn(x, t, **model_kwargs) |
|
|
|
out = p_mean_var.copy() |
|
out["pred_xstart"] = self._predict_xstart_from_eps(x, t, eps) |
|
out["mean"], _, _ = self.q_posterior_mean_variance(x_start=out["pred_xstart"], x_t=x, t=t) |
|
return out |
|
|
|
def p_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
): |
|
""" |
|
Sample x_{t-1} from the model at the given timestep. |
|
|
|
:param model: the model to sample from. |
|
:param x: the current tensor at x_{t-1}. |
|
:param t: the value of t, starting at 0 for the first diffusion step. |
|
:param clip_denoised: if True, clip the x_start prediction to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:return: a dict containing the following keys: |
|
- 'sample': a random sample from the model. |
|
- 'pred_xstart': a prediction of x_0. |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
noise = th.randn_like(x) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
if cond_fn is not None: |
|
out["mean"] = self.condition_mean(cond_fn, out, x, t, model_kwargs=model_kwargs) |
|
sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def p_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model. |
|
|
|
:param model: the model module. |
|
:param shape: the shape of the samples, (N, C, H, W). |
|
:param noise: if specified, the noise from the encoder to sample. |
|
Should be of the same shape as `shape`. |
|
:param clip_denoised: if True, clip x_start predictions to [-1, 1]. |
|
:param denoised_fn: if not None, a function which applies to the |
|
x_start prediction before it is used to sample. |
|
:param cond_fn: if not None, this is a gradient function that acts |
|
similarly to the model. |
|
:param model_kwargs: if not None, a dict of extra keyword arguments to |
|
pass to the model. This can be used for conditioning. |
|
:param device: if specified, the device to create the samples on. |
|
If not specified, use a model parameter's device. |
|
:param progress: if True, show a tqdm progress bar. |
|
:return: a non-differentiable batch of samples. |
|
""" |
|
final = None |
|
for sample in self.p_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def p_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
): |
|
""" |
|
Generate samples from the model and yield intermediate samples from |
|
each timestep of diffusion. |
|
|
|
Arguments are the same as p_sample_loop(). |
|
Returns a generator over dicts, where each dict is the return value of |
|
p_sample(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.p_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
def ddim_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t-1} from the model using DDIM. |
|
|
|
Same usage as p_sample(). |
|
""" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
if cond_fn is not None: |
|
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) |
|
|
|
|
|
|
|
eps = self._predict_eps_from_xstart(x, t, out["pred_xstart"]) |
|
|
|
alpha_bar = _extract_into_tensor(self.alphas_cumprod, t, x.shape) |
|
alpha_bar_prev = _extract_into_tensor(self.alphas_cumprod_prev, t, x.shape) |
|
sigma = ( |
|
eta |
|
* th.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar)) |
|
* th.sqrt(1 - alpha_bar / alpha_bar_prev) |
|
) |
|
|
|
noise = th.randn_like(x) |
|
mean_pred = ( |
|
out["pred_xstart"] * th.sqrt(alpha_bar_prev) |
|
+ th.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps |
|
) |
|
nonzero_mask = ( |
|
(t != 0).float().view(-1, *([1] * (len(x.shape) - 1))) |
|
) |
|
sample = mean_pred + nonzero_mask * sigma * noise |
|
return {"sample": sample, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_reverse_sample( |
|
self, |
|
model, |
|
x, |
|
t, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
eta=0.0, |
|
): |
|
""" |
|
Sample x_{t+1} from the model using DDIM reverse ODE. |
|
""" |
|
assert eta == 0.0, "Reverse ODE only for deterministic path" |
|
out = self.p_mean_variance( |
|
model, |
|
x, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
model_kwargs=model_kwargs, |
|
) |
|
if cond_fn is not None: |
|
out = self.condition_score(cond_fn, out, x, t, model_kwargs=model_kwargs) |
|
|
|
|
|
eps = ( |
|
_extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x.shape) * x |
|
- out["pred_xstart"] |
|
) / _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x.shape) |
|
alpha_bar_next = _extract_into_tensor(self.alphas_cumprod_next, t, x.shape) |
|
|
|
|
|
mean_pred = out["pred_xstart"] * th.sqrt(alpha_bar_next) + th.sqrt(1 - alpha_bar_next) * eps |
|
|
|
return {"sample": mean_pred, "pred_xstart": out["pred_xstart"]} |
|
|
|
def ddim_sample_loop( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
): |
|
""" |
|
Generate samples from the model using DDIM. |
|
|
|
Same usage as p_sample_loop(). |
|
""" |
|
final = None |
|
for sample in self.ddim_sample_loop_progressive( |
|
model, |
|
shape, |
|
noise=noise, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
device=device, |
|
progress=progress, |
|
eta=eta, |
|
): |
|
final = sample |
|
return final["sample"] |
|
|
|
def ddim_sample_loop_progressive( |
|
self, |
|
model, |
|
shape, |
|
noise=None, |
|
clip_denoised=True, |
|
denoised_fn=None, |
|
cond_fn=None, |
|
model_kwargs=None, |
|
device=None, |
|
progress=False, |
|
eta=0.0, |
|
): |
|
""" |
|
Use DDIM to sample from the model and yield intermediate samples from |
|
each timestep of DDIM. |
|
|
|
Same usage as p_sample_loop_progressive(). |
|
""" |
|
if device is None: |
|
device = next(model.parameters()).device |
|
assert isinstance(shape, (tuple, list)) |
|
if noise is not None: |
|
img = noise |
|
else: |
|
img = th.randn(*shape, device=device) |
|
indices = list(range(self.num_timesteps))[::-1] |
|
|
|
if progress: |
|
|
|
from tqdm.auto import tqdm |
|
|
|
indices = tqdm(indices) |
|
|
|
for i in indices: |
|
t = th.tensor([i] * shape[0], device=device) |
|
with th.no_grad(): |
|
out = self.ddim_sample( |
|
model, |
|
img, |
|
t, |
|
clip_denoised=clip_denoised, |
|
denoised_fn=denoised_fn, |
|
cond_fn=cond_fn, |
|
model_kwargs=model_kwargs, |
|
eta=eta, |
|
) |
|
yield out |
|
img = out["sample"] |
|
|
|
|
|
def _extract_into_tensor(arr, timesteps, broadcast_shape): |
|
""" |
|
Extract values from a 1-D numpy array for a batch of indices. |
|
|
|
:param arr: the 1-D numpy array. |
|
:param timesteps: a tensor of indices into the array to extract. |
|
:param broadcast_shape: a larger shape of K dimensions with the batch |
|
dimension equal to the length of timesteps. |
|
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. |
|
""" |
|
res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() |
|
while len(res.shape) < len(broadcast_shape): |
|
res = res[..., None] |
|
return res + th.zeros(broadcast_shape, device=timesteps.device) |