|
import math |
|
from abc import abstractmethod |
|
|
|
import torch as th |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
from fp16_util import convert_module_to_f16, convert_module_to_f32 |
|
from nn import avg_pool_nd, conv_nd, linear, normalization, timestep_embedding, zero_module |
|
|
|
|
|
class TimestepBlock(nn.Module): |
|
""" |
|
Any module where forward() takes timestep embeddings as a second argument. |
|
""" |
|
|
|
@abstractmethod |
|
def forward(self, x, emb): |
|
""" |
|
Apply the module to `x` given `emb` timestep embeddings. |
|
""" |
|
|
|
|
|
class TimestepEmbedSequential(nn.Sequential, TimestepBlock): |
|
""" |
|
A sequential module that passes timestep embeddings to the children that |
|
support it as an extra input. |
|
""" |
|
|
|
def forward(self, x, emb, encoder_out=None): |
|
for layer in self: |
|
if isinstance(layer, TimestepBlock): |
|
x = layer(x, emb) |
|
elif isinstance(layer, AttentionBlock): |
|
x = layer(x, encoder_out) |
|
else: |
|
x = layer(x) |
|
return x |
|
|
|
|
|
class Upsample(nn.Module): |
|
""" |
|
An upsampling layer with an optional convolution. |
|
|
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
upsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
if use_conv: |
|
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
if self.dims == 3: |
|
x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") |
|
else: |
|
x = F.interpolate(x, scale_factor=2, mode="nearest") |
|
if self.use_conv: |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class Downsample(nn.Module): |
|
""" |
|
A downsampling layer with an optional convolution. |
|
|
|
:param channels: channels in the inputs and outputs. |
|
:param use_conv: a bool determining if a convolution is applied. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then |
|
downsampling occurs in the inner-two dimensions. |
|
""" |
|
|
|
def __init__(self, channels, use_conv, dims=2, out_channels=None): |
|
super().__init__() |
|
self.channels = channels |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.dims = dims |
|
stride = 2 if dims != 3 else (1, 2, 2) |
|
if use_conv: |
|
self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=1) |
|
else: |
|
assert self.channels == self.out_channels |
|
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) |
|
|
|
def forward(self, x): |
|
assert x.shape[1] == self.channels |
|
return self.op(x) |
|
|
|
|
|
class ResBlock(TimestepBlock): |
|
""" |
|
A residual block that can optionally change the number of channels. |
|
|
|
:param channels: the number of input channels. |
|
:param emb_channels: the number of timestep embedding channels. |
|
:param dropout: the rate of dropout. |
|
:param out_channels: if specified, the number of out channels. |
|
:param use_conv: if True and out_channels is specified, use a spatial |
|
convolution instead of a smaller 1x1 convolution to change the |
|
channels in the skip connection. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param use_checkpoint: if True, use gradient checkpointing on this module. |
|
:param up: if True, use this block for upsampling. |
|
:param down: if True, use this block for downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
emb_channels, |
|
dropout, |
|
out_channels=None, |
|
use_conv=False, |
|
use_scale_shift_norm=False, |
|
dims=2, |
|
use_checkpoint=False, |
|
up=False, |
|
down=False, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
self.emb_channels = emb_channels |
|
self.dropout = dropout |
|
self.out_channels = out_channels or channels |
|
self.use_conv = use_conv |
|
self.use_checkpoint = use_checkpoint |
|
self.use_scale_shift_norm = use_scale_shift_norm |
|
|
|
self.in_layers = nn.Sequential( |
|
normalization(channels, swish=1.0), |
|
nn.Identity(), |
|
conv_nd(dims, channels, self.out_channels, 3, padding=1), |
|
) |
|
|
|
self.updown = up or down |
|
|
|
if up: |
|
self.h_upd = Upsample(channels, False, dims) |
|
self.x_upd = Upsample(channels, False, dims) |
|
elif down: |
|
self.h_upd = Downsample(channels, False, dims) |
|
self.x_upd = Downsample(channels, False, dims) |
|
else: |
|
self.h_upd = self.x_upd = nn.Identity() |
|
|
|
self.emb_layers = nn.Sequential( |
|
nn.SiLU(), |
|
linear( |
|
emb_channels, |
|
2 * self.out_channels if use_scale_shift_norm else self.out_channels, |
|
), |
|
) |
|
self.out_layers = nn.Sequential( |
|
normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0), |
|
nn.SiLU() if use_scale_shift_norm else nn.Identity(), |
|
nn.Dropout(p=dropout), |
|
zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)), |
|
) |
|
|
|
if self.out_channels == channels: |
|
self.skip_connection = nn.Identity() |
|
elif use_conv: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) |
|
else: |
|
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) |
|
|
|
def forward(self, x, emb): |
|
""" |
|
Apply the block to a Tensor, conditioned on a timestep embedding. |
|
|
|
:param x: an [N x C x ...] Tensor of features. |
|
:param emb: an [N x emb_channels] Tensor of timestep embeddings. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
if self.updown: |
|
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] |
|
h = in_rest(x) |
|
h = self.h_upd(h) |
|
x = self.x_upd(x) |
|
h = in_conv(h) |
|
else: |
|
h = self.in_layers(x) |
|
emb_out = self.emb_layers(emb).type(h.dtype) |
|
while len(emb_out.shape) < len(h.shape): |
|
emb_out = emb_out[..., None] |
|
if self.use_scale_shift_norm: |
|
out_norm, out_rest = self.out_layers[0], self.out_layers[1:] |
|
scale, shift = th.chunk(emb_out, 2, dim=1) |
|
h = out_norm(h) * (1 + scale) + shift |
|
h = out_rest(h) |
|
else: |
|
h = h + emb_out |
|
h = self.out_layers(h) |
|
return self.skip_connection(x) + h |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
""" |
|
An attention block that allows spatial positions to attend to each other. |
|
|
|
Originally ported from here, but adapted to the N-d case. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
channels, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
use_checkpoint=False, |
|
encoder_channels=None, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
if num_head_channels == -1: |
|
self.num_heads = num_heads |
|
else: |
|
assert ( |
|
channels % num_head_channels == 0 |
|
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" |
|
self.num_heads = channels // num_head_channels |
|
self.use_checkpoint = use_checkpoint |
|
self.norm = normalization(channels, swish=0.0) |
|
self.qkv = conv_nd(1, channels, channels * 3, 1) |
|
self.attention = QKVAttention(self.num_heads) |
|
|
|
if encoder_channels is not None: |
|
self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1) |
|
self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) |
|
|
|
def forward(self, x, encoder_out=None): |
|
b, c, *spatial = x.shape |
|
qkv = self.qkv(self.norm(x).view(b, c, -1)) |
|
if encoder_out is not None: |
|
encoder_out = self.encoder_kv(encoder_out) |
|
h = self.attention(qkv, encoder_out) |
|
else: |
|
h = self.attention(qkv) |
|
h = self.proj_out(h) |
|
return x + h.reshape(b, c, *spatial) |
|
|
|
|
|
class QKVAttention(nn.Module): |
|
""" |
|
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping |
|
""" |
|
|
|
def __init__(self, n_heads): |
|
super().__init__() |
|
self.n_heads = n_heads |
|
|
|
def forward(self, qkv, encoder_kv=None): |
|
""" |
|
Apply QKV attention. |
|
|
|
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. |
|
:return: an [N x (H * C) x T] tensor after attention. |
|
""" |
|
bs, width, length = qkv.shape |
|
assert width % (3 * self.n_heads) == 0 |
|
ch = width // (3 * self.n_heads) |
|
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) |
|
if encoder_kv is not None: |
|
assert encoder_kv.shape[1] == self.n_heads * ch * 2 |
|
ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1) |
|
k = th.cat([ek, k], dim=-1) |
|
v = th.cat([ev, v], dim=-1) |
|
scale = 1 / math.sqrt(math.sqrt(ch)) |
|
weight = th.einsum( |
|
"bct,bcs->bts", q * scale, k * scale |
|
) |
|
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) |
|
a = th.einsum("bts,bcs->bct", weight, v) |
|
return a.reshape(bs, -1, length) |
|
|
|
|
|
class UNetModel(nn.Module): |
|
""" |
|
The full UNet model with attention and timestep embedding. |
|
|
|
:param in_channels: channels in the input Tensor. |
|
:param model_channels: base channel count for the model. |
|
:param out_channels: channels in the output Tensor. |
|
:param num_res_blocks: number of residual blocks per downsample. |
|
:param attention_resolutions: a collection of downsample rates at which |
|
attention will take place. May be a set, list, or tuple. |
|
For example, if this contains 4, then at 4x downsampling, attention |
|
will be used. |
|
:param dropout: the dropout probability. |
|
:param channel_mult: channel multiplier for each level of the UNet. |
|
:param conv_resample: if True, use learned convolutions for upsampling and |
|
downsampling. |
|
:param dims: determines if the signal is 1D, 2D, or 3D. |
|
:param num_classes: if specified (as an int), then this model will be |
|
class-conditional with `num_classes` classes. |
|
:param use_checkpoint: use gradient checkpointing to reduce memory usage. |
|
:param num_heads: the number of attention heads in each attention layer. |
|
:param num_heads_channels: if specified, ignore num_heads and instead use |
|
a fixed channel width per attention head. |
|
:param num_heads_upsample: works with num_heads to set a different number |
|
of heads for upsampling. Deprecated. |
|
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism. |
|
:param resblock_updown: use residual blocks for up/downsampling. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels, |
|
model_channels, |
|
out_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
num_classes=None, |
|
use_checkpoint=False, |
|
use_fp16=False, |
|
num_heads=1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
encoder_channels=None, |
|
): |
|
super().__init__() |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
self.out_channels = out_channels |
|
self.num_res_blocks = num_res_blocks |
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.num_classes = num_classes |
|
self.use_checkpoint = use_checkpoint |
|
self.dtype = th.float16 if use_fp16 else th.float32 |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
if self.num_classes is not None: |
|
self.label_emb = nn.Embedding(num_classes, time_embed_dim) |
|
|
|
ch = input_ch = int(channel_mult[0] * model_channels) |
|
self.input_blocks = nn.ModuleList( |
|
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))] |
|
) |
|
self._feature_size = ch |
|
input_block_chans = [ch] |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for _ in range(num_res_blocks): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(mult * model_channels), |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(mult * model_channels) |
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
encoder_channels=encoder_channels, |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=num_head_channels, |
|
encoder_channels=encoder_channels, |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self._feature_size += ch |
|
|
|
self.output_blocks = nn.ModuleList([]) |
|
for level, mult in list(enumerate(channel_mult))[::-1]: |
|
for i in range(num_res_blocks + 1): |
|
ich = input_block_chans.pop() |
|
layers = [ |
|
ResBlock( |
|
ch + ich, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=int(model_channels * mult), |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = int(model_channels * mult) |
|
if ds in attention_resolutions: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads_upsample, |
|
num_head_channels=num_head_channels, |
|
encoder_channels=encoder_channels, |
|
) |
|
) |
|
if level and i == num_res_blocks: |
|
out_ch = ch |
|
layers.append( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
up=True, |
|
) |
|
if resblock_updown |
|
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) |
|
) |
|
ds //= 2 |
|
self.output_blocks.append(TimestepEmbedSequential(*layers)) |
|
self._feature_size += ch |
|
|
|
self.out = nn.Sequential( |
|
normalization(ch, swish=1.0), |
|
nn.Identity(), |
|
zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)), |
|
) |
|
self.use_fp16 = use_fp16 |
|
|
|
def convert_to_fp16(self): |
|
""" |
|
Convert the torso of the model to float16. |
|
""" |
|
self.input_blocks.apply(convert_module_to_f16) |
|
self.middle_block.apply(convert_module_to_f16) |
|
self.output_blocks.apply(convert_module_to_f16) |
|
|
|
def convert_to_fp32(self): |
|
""" |
|
Convert the torso of the model to float32. |
|
""" |
|
self.input_blocks.apply(convert_module_to_f32) |
|
self.middle_block.apply(convert_module_to_f32) |
|
self.output_blocks.apply(convert_module_to_f32) |
|
|
|
def forward(self, x, timesteps, y=None): |
|
""" |
|
Apply the model to an input batch. |
|
|
|
:param x: an [N x C x ...] Tensor of inputs. |
|
:param timesteps: a 1-D batch of timesteps. |
|
:param y: an [N] Tensor of labels, if class-conditional. |
|
:return: an [N x C x ...] Tensor of outputs. |
|
""" |
|
assert (y is not None) == ( |
|
self.num_classes is not None |
|
), "must specify y if and only if the model is class-conditional" |
|
|
|
hs = [] |
|
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) |
|
|
|
if self.num_classes is not None: |
|
assert y.shape == (x.shape[0],) |
|
emb = emb + self.label_emb(y) |
|
|
|
h = x.type(self.dtype) |
|
for module in self.input_blocks: |
|
h = module(h, emb) |
|
hs.append(h) |
|
h = self.middle_block(h, emb) |
|
for module in self.output_blocks: |
|
h = th.cat([h, hs.pop()], dim=1) |
|
h = module(h, emb) |
|
h = h.type(x.dtype) |
|
return self.out(h) |
|
|
|
|
|
class SuperResUNetModel(UNetModel): |
|
""" |
|
A UNetModel that performs super-resolution. |
|
|
|
Expects an extra kwarg `low_res` to condition on a low-resolution image. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
if "in_channels" in kwargs: |
|
kwargs = dict(kwargs) |
|
kwargs["in_channels"] = kwargs["in_channels"] * 2 |
|
else: |
|
|
|
args = list(args) |
|
args[1] = args[1] * 2 |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, x, timesteps, low_res=None, **kwargs): |
|
_, _, new_height, new_width = x.shape |
|
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") |
|
x = th.cat([x, upsampled], dim=1) |
|
return super().forward(x, timesteps, **kwargs) |
|
|
|
|
|
class InpaintUNetModel(UNetModel): |
|
""" |
|
A UNetModel which can perform inpainting. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
if "in_channels" in kwargs: |
|
kwargs = dict(kwargs) |
|
kwargs["in_channels"] = kwargs["in_channels"] * 2 + 1 |
|
else: |
|
|
|
args = list(args) |
|
args[1] = args[1] * 2 + 1 |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward(self, x, timesteps, inpaint_image=None, inpaint_mask=None, **kwargs): |
|
if inpaint_image is None: |
|
inpaint_image = th.zeros_like(x) |
|
if inpaint_mask is None: |
|
inpaint_mask = th.zeros_like(x[:, :1]) |
|
return super().forward( |
|
th.cat([x, inpaint_image * inpaint_mask, inpaint_mask], dim=1), |
|
timesteps, |
|
**kwargs, |
|
) |
|
|
|
|
|
class SuperResInpaintUNetModel(UNetModel): |
|
""" |
|
A UNetModel which can perform both upsampling and inpainting. |
|
""" |
|
|
|
def __init__(self, *args, **kwargs): |
|
if "in_channels" in kwargs: |
|
kwargs = dict(kwargs) |
|
kwargs["in_channels"] = kwargs["in_channels"] * 3 + 1 |
|
else: |
|
|
|
args = list(args) |
|
args[1] = args[1] * 3 + 1 |
|
super().__init__(*args, **kwargs) |
|
|
|
def forward( |
|
self, |
|
x, |
|
timesteps, |
|
inpaint_image=None, |
|
inpaint_mask=None, |
|
low_res=None, |
|
**kwargs, |
|
): |
|
if inpaint_image is None: |
|
inpaint_image = th.zeros_like(x) |
|
if inpaint_mask is None: |
|
inpaint_mask = th.zeros_like(x[:, :1]) |
|
_, _, new_height, new_width = x.shape |
|
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") |
|
return super().forward( |
|
th.cat([x, inpaint_image * inpaint_mask, inpaint_mask, upsampled], dim=1), |
|
timesteps, |
|
**kwargs, |
|
) |