nRuaif
commited on
Commit
·
c106cb5
1
Parent(s):
a550e19
Upload folder using huggingface_hub
Browse files- checkpoint-284/README.md +220 -0
- checkpoint-284/adapter_config.json +29 -0
- checkpoint-284/adapter_model.safetensors +3 -0
- checkpoint-284/latest +1 -0
- checkpoint-284/rng_state_0.pth +3 -0
- checkpoint-284/rng_state_1.pth +3 -0
- checkpoint-284/trainer_state.json +1725 -0
- checkpoint-284/training_args.bin +3 -0
- checkpoint-284/zero_to_fp32.py +587 -0
checkpoint-284/README.md
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: peft
|
| 3 |
+
base_model: mistralai/Mixtral-8x7B-v0.1
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
| 200 |
+
|
| 201 |
+
|
| 202 |
+
## Training procedure
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
The following `bitsandbytes` quantization config was used during training:
|
| 206 |
+
- quant_method: bitsandbytes
|
| 207 |
+
- load_in_8bit: False
|
| 208 |
+
- load_in_4bit: True
|
| 209 |
+
- llm_int8_threshold: 6.0
|
| 210 |
+
- llm_int8_skip_modules: None
|
| 211 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
| 212 |
+
- llm_int8_has_fp16_weight: False
|
| 213 |
+
- bnb_4bit_quant_type: nf4
|
| 214 |
+
- bnb_4bit_use_double_quant: True
|
| 215 |
+
- bnb_4bit_compute_dtype: bfloat16
|
| 216 |
+
|
| 217 |
+
### Framework versions
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
- PEFT 0.6.0
|
checkpoint-284/adapter_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"alpha_pattern": {},
|
| 3 |
+
"auto_mapping": null,
|
| 4 |
+
"base_model_name_or_path": "mistralai/Mixtral-8x7B-v0.1",
|
| 5 |
+
"bias": "none",
|
| 6 |
+
"fan_in_fan_out": null,
|
| 7 |
+
"inference_mode": true,
|
| 8 |
+
"init_lora_weights": true,
|
| 9 |
+
"layers_pattern": null,
|
| 10 |
+
"layers_to_transform": null,
|
| 11 |
+
"lora_alpha": 64,
|
| 12 |
+
"lora_dropout": 0,
|
| 13 |
+
"modules_to_save": null,
|
| 14 |
+
"peft_type": "LORA",
|
| 15 |
+
"r": 32,
|
| 16 |
+
"rank_pattern": {},
|
| 17 |
+
"revision": null,
|
| 18 |
+
"target_modules": [
|
| 19 |
+
"gate",
|
| 20 |
+
"w1",
|
| 21 |
+
"v_proj",
|
| 22 |
+
"k_proj",
|
| 23 |
+
"w3",
|
| 24 |
+
"o_proj",
|
| 25 |
+
"q_proj",
|
| 26 |
+
"w2"
|
| 27 |
+
],
|
| 28 |
+
"task_type": "CAUSAL_LM"
|
| 29 |
+
}
|
checkpoint-284/adapter_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7de8dbe58c960a8a3e90f5ebe902b4830193773274caf5e1c44cf80fdf5a71f7
|
| 3 |
+
size 969176736
|
checkpoint-284/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step284
|
checkpoint-284/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70c0b62bd953493d0675c34feecb6cb4564541e1efc60bb1704ce38255044908
|
| 3 |
+
size 15607
|
checkpoint-284/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:241736953f399f6929c6ad898eaf28227b020331cba8da2c020aaaff41594b10
|
| 3 |
+
size 15607
|
checkpoint-284/trainer_state.json
ADDED
|
@@ -0,0 +1,1725 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.5026548672566372,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 284,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.0,
|
| 13 |
+
"learning_rate": 4.807692307692308e-06,
|
| 14 |
+
"loss": 2.0125,
|
| 15 |
+
"step": 1
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"epoch": 0.0,
|
| 19 |
+
"learning_rate": 9.615384615384616e-06,
|
| 20 |
+
"loss": 1.9307,
|
| 21 |
+
"step": 2
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"epoch": 0.01,
|
| 25 |
+
"learning_rate": 1.4423076923076924e-05,
|
| 26 |
+
"loss": 1.6104,
|
| 27 |
+
"step": 3
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"epoch": 0.01,
|
| 31 |
+
"learning_rate": 1.923076923076923e-05,
|
| 32 |
+
"loss": 1.9208,
|
| 33 |
+
"step": 4
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"epoch": 0.01,
|
| 37 |
+
"learning_rate": 2.4038461538461542e-05,
|
| 38 |
+
"loss": 1.7502,
|
| 39 |
+
"step": 5
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"epoch": 0.01,
|
| 43 |
+
"learning_rate": 2.884615384615385e-05,
|
| 44 |
+
"loss": 2.2112,
|
| 45 |
+
"step": 6
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"epoch": 0.01,
|
| 49 |
+
"learning_rate": 3.365384615384615e-05,
|
| 50 |
+
"loss": 1.5895,
|
| 51 |
+
"step": 7
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.01,
|
| 55 |
+
"learning_rate": 3.846153846153846e-05,
|
| 56 |
+
"loss": 1.9856,
|
| 57 |
+
"step": 8
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"epoch": 0.02,
|
| 61 |
+
"learning_rate": 4.3269230769230766e-05,
|
| 62 |
+
"loss": 2.1565,
|
| 63 |
+
"step": 9
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"epoch": 0.02,
|
| 67 |
+
"learning_rate": 4.8076923076923084e-05,
|
| 68 |
+
"loss": 1.6874,
|
| 69 |
+
"step": 10
|
| 70 |
+
},
|
| 71 |
+
{
|
| 72 |
+
"epoch": 0.02,
|
| 73 |
+
"learning_rate": 5.288461538461539e-05,
|
| 74 |
+
"loss": 1.614,
|
| 75 |
+
"step": 11
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"epoch": 0.02,
|
| 79 |
+
"learning_rate": 5.76923076923077e-05,
|
| 80 |
+
"loss": 1.8226,
|
| 81 |
+
"step": 12
|
| 82 |
+
},
|
| 83 |
+
{
|
| 84 |
+
"epoch": 0.02,
|
| 85 |
+
"learning_rate": 6.25e-05,
|
| 86 |
+
"loss": 1.4058,
|
| 87 |
+
"step": 13
|
| 88 |
+
},
|
| 89 |
+
{
|
| 90 |
+
"epoch": 0.02,
|
| 91 |
+
"learning_rate": 6.73076923076923e-05,
|
| 92 |
+
"loss": 1.4717,
|
| 93 |
+
"step": 14
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.03,
|
| 97 |
+
"learning_rate": 7.211538461538461e-05,
|
| 98 |
+
"loss": 1.5335,
|
| 99 |
+
"step": 15
|
| 100 |
+
},
|
| 101 |
+
{
|
| 102 |
+
"epoch": 0.03,
|
| 103 |
+
"learning_rate": 7.692307692307693e-05,
|
| 104 |
+
"loss": 2.1125,
|
| 105 |
+
"step": 16
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"epoch": 0.03,
|
| 109 |
+
"learning_rate": 8.173076923076923e-05,
|
| 110 |
+
"loss": 1.9451,
|
| 111 |
+
"step": 17
|
| 112 |
+
},
|
| 113 |
+
{
|
| 114 |
+
"epoch": 0.03,
|
| 115 |
+
"learning_rate": 8.653846153846153e-05,
|
| 116 |
+
"loss": 1.7484,
|
| 117 |
+
"step": 18
|
| 118 |
+
},
|
| 119 |
+
{
|
| 120 |
+
"epoch": 0.03,
|
| 121 |
+
"learning_rate": 9.134615384615384e-05,
|
| 122 |
+
"loss": 1.7573,
|
| 123 |
+
"step": 19
|
| 124 |
+
},
|
| 125 |
+
{
|
| 126 |
+
"epoch": 0.04,
|
| 127 |
+
"learning_rate": 9.615384615384617e-05,
|
| 128 |
+
"loss": 2.1968,
|
| 129 |
+
"step": 20
|
| 130 |
+
},
|
| 131 |
+
{
|
| 132 |
+
"epoch": 0.04,
|
| 133 |
+
"learning_rate": 0.00010096153846153847,
|
| 134 |
+
"loss": 1.7941,
|
| 135 |
+
"step": 21
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.04,
|
| 139 |
+
"learning_rate": 0.00010576923076923077,
|
| 140 |
+
"loss": 1.8685,
|
| 141 |
+
"step": 22
|
| 142 |
+
},
|
| 143 |
+
{
|
| 144 |
+
"epoch": 0.04,
|
| 145 |
+
"learning_rate": 0.00011057692307692308,
|
| 146 |
+
"loss": 2.0065,
|
| 147 |
+
"step": 23
|
| 148 |
+
},
|
| 149 |
+
{
|
| 150 |
+
"epoch": 0.04,
|
| 151 |
+
"learning_rate": 0.0001153846153846154,
|
| 152 |
+
"loss": 1.9018,
|
| 153 |
+
"step": 24
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"epoch": 0.04,
|
| 157 |
+
"learning_rate": 0.0001201923076923077,
|
| 158 |
+
"loss": 2.0752,
|
| 159 |
+
"step": 25
|
| 160 |
+
},
|
| 161 |
+
{
|
| 162 |
+
"epoch": 0.05,
|
| 163 |
+
"learning_rate": 0.000125,
|
| 164 |
+
"loss": 1.716,
|
| 165 |
+
"step": 26
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"epoch": 0.05,
|
| 169 |
+
"learning_rate": 0.00012980769230769233,
|
| 170 |
+
"loss": 1.6542,
|
| 171 |
+
"step": 27
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"epoch": 0.05,
|
| 175 |
+
"learning_rate": 0.0001346153846153846,
|
| 176 |
+
"loss": 1.7198,
|
| 177 |
+
"step": 28
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.05,
|
| 181 |
+
"learning_rate": 0.00013942307692307694,
|
| 182 |
+
"loss": 1.8383,
|
| 183 |
+
"step": 29
|
| 184 |
+
},
|
| 185 |
+
{
|
| 186 |
+
"epoch": 0.05,
|
| 187 |
+
"learning_rate": 0.00014423076923076922,
|
| 188 |
+
"loss": 1.6938,
|
| 189 |
+
"step": 30
|
| 190 |
+
},
|
| 191 |
+
{
|
| 192 |
+
"epoch": 0.05,
|
| 193 |
+
"learning_rate": 0.00014903846153846155,
|
| 194 |
+
"loss": 1.9142,
|
| 195 |
+
"step": 31
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"epoch": 0.06,
|
| 199 |
+
"learning_rate": 0.00015384615384615385,
|
| 200 |
+
"loss": 1.7715,
|
| 201 |
+
"step": 32
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"epoch": 0.06,
|
| 205 |
+
"learning_rate": 0.00015865384615384616,
|
| 206 |
+
"loss": 1.467,
|
| 207 |
+
"step": 33
|
| 208 |
+
},
|
| 209 |
+
{
|
| 210 |
+
"epoch": 0.06,
|
| 211 |
+
"learning_rate": 0.00016346153846153846,
|
| 212 |
+
"loss": 1.7608,
|
| 213 |
+
"step": 34
|
| 214 |
+
},
|
| 215 |
+
{
|
| 216 |
+
"epoch": 0.06,
|
| 217 |
+
"learning_rate": 0.0001682692307692308,
|
| 218 |
+
"loss": 1.5371,
|
| 219 |
+
"step": 35
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.06,
|
| 223 |
+
"learning_rate": 0.00017307692307692307,
|
| 224 |
+
"loss": 1.6211,
|
| 225 |
+
"step": 36
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"epoch": 0.07,
|
| 229 |
+
"learning_rate": 0.0001778846153846154,
|
| 230 |
+
"loss": 1.7275,
|
| 231 |
+
"step": 37
|
| 232 |
+
},
|
| 233 |
+
{
|
| 234 |
+
"epoch": 0.07,
|
| 235 |
+
"learning_rate": 0.00018269230769230767,
|
| 236 |
+
"loss": 1.7063,
|
| 237 |
+
"step": 38
|
| 238 |
+
},
|
| 239 |
+
{
|
| 240 |
+
"epoch": 0.07,
|
| 241 |
+
"learning_rate": 0.0001875,
|
| 242 |
+
"loss": 1.9367,
|
| 243 |
+
"step": 39
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"epoch": 0.07,
|
| 247 |
+
"learning_rate": 0.00019230769230769233,
|
| 248 |
+
"loss": 1.6608,
|
| 249 |
+
"step": 40
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"epoch": 0.07,
|
| 253 |
+
"learning_rate": 0.0001971153846153846,
|
| 254 |
+
"loss": 1.9212,
|
| 255 |
+
"step": 41
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"epoch": 0.07,
|
| 259 |
+
"learning_rate": 0.00020192307692307694,
|
| 260 |
+
"loss": 1.611,
|
| 261 |
+
"step": 42
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.08,
|
| 265 |
+
"learning_rate": 0.00020673076923076922,
|
| 266 |
+
"loss": 1.8582,
|
| 267 |
+
"step": 43
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"epoch": 0.08,
|
| 271 |
+
"learning_rate": 0.00021153846153846155,
|
| 272 |
+
"loss": 1.5658,
|
| 273 |
+
"step": 44
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"epoch": 0.08,
|
| 277 |
+
"learning_rate": 0.00021634615384615385,
|
| 278 |
+
"loss": 1.8543,
|
| 279 |
+
"step": 45
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"epoch": 0.08,
|
| 283 |
+
"learning_rate": 0.00022115384615384616,
|
| 284 |
+
"loss": 1.7291,
|
| 285 |
+
"step": 46
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"epoch": 0.08,
|
| 289 |
+
"learning_rate": 0.00022596153846153846,
|
| 290 |
+
"loss": 1.9411,
|
| 291 |
+
"step": 47
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"epoch": 0.08,
|
| 295 |
+
"learning_rate": 0.0002307692307692308,
|
| 296 |
+
"loss": 1.8138,
|
| 297 |
+
"step": 48
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"epoch": 0.09,
|
| 301 |
+
"learning_rate": 0.00023557692307692307,
|
| 302 |
+
"loss": 1.708,
|
| 303 |
+
"step": 49
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.09,
|
| 307 |
+
"learning_rate": 0.0002403846153846154,
|
| 308 |
+
"loss": 1.675,
|
| 309 |
+
"step": 50
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"epoch": 0.09,
|
| 313 |
+
"learning_rate": 0.0002451923076923077,
|
| 314 |
+
"loss": 1.658,
|
| 315 |
+
"step": 51
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"epoch": 0.09,
|
| 319 |
+
"learning_rate": 0.00025,
|
| 320 |
+
"loss": 1.9797,
|
| 321 |
+
"step": 52
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"epoch": 0.09,
|
| 325 |
+
"learning_rate": 0.000249997656075194,
|
| 326 |
+
"loss": 1.5857,
|
| 327 |
+
"step": 53
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"epoch": 0.1,
|
| 331 |
+
"learning_rate": 0.0002499906243886798,
|
| 332 |
+
"loss": 1.8837,
|
| 333 |
+
"step": 54
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"epoch": 0.1,
|
| 337 |
+
"learning_rate": 0.00024997890520416535,
|
| 338 |
+
"loss": 1.8022,
|
| 339 |
+
"step": 55
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"epoch": 0.1,
|
| 343 |
+
"learning_rate": 0.0002499624989611527,
|
| 344 |
+
"loss": 1.9101,
|
| 345 |
+
"step": 56
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.1,
|
| 349 |
+
"learning_rate": 0.00024994140627492207,
|
| 350 |
+
"loss": 1.5614,
|
| 351 |
+
"step": 57
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"epoch": 0.1,
|
| 355 |
+
"learning_rate": 0.00024991562793650793,
|
| 356 |
+
"loss": 1.8988,
|
| 357 |
+
"step": 58
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"epoch": 0.1,
|
| 361 |
+
"learning_rate": 0.0002498851649126703,
|
| 362 |
+
"loss": 1.7089,
|
| 363 |
+
"step": 59
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"epoch": 0.11,
|
| 367 |
+
"learning_rate": 0.00024985001834585763,
|
| 368 |
+
"loss": 1.7782,
|
| 369 |
+
"step": 60
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"epoch": 0.11,
|
| 373 |
+
"learning_rate": 0.0002498101895541645,
|
| 374 |
+
"loss": 1.5338,
|
| 375 |
+
"step": 61
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"epoch": 0.11,
|
| 379 |
+
"learning_rate": 0.0002497656800312821,
|
| 380 |
+
"loss": 1.6484,
|
| 381 |
+
"step": 62
|
| 382 |
+
},
|
| 383 |
+
{
|
| 384 |
+
"epoch": 0.11,
|
| 385 |
+
"learning_rate": 0.0002497164914464419,
|
| 386 |
+
"loss": 1.733,
|
| 387 |
+
"step": 63
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.11,
|
| 391 |
+
"learning_rate": 0.00024966262564435343,
|
| 392 |
+
"loss": 1.8893,
|
| 393 |
+
"step": 64
|
| 394 |
+
},
|
| 395 |
+
{
|
| 396 |
+
"epoch": 0.12,
|
| 397 |
+
"learning_rate": 0.000249604084645135,
|
| 398 |
+
"loss": 1.6361,
|
| 399 |
+
"step": 65
|
| 400 |
+
},
|
| 401 |
+
{
|
| 402 |
+
"epoch": 0.12,
|
| 403 |
+
"learning_rate": 0.0002495408706442377,
|
| 404 |
+
"loss": 1.9827,
|
| 405 |
+
"step": 66
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"epoch": 0.12,
|
| 409 |
+
"learning_rate": 0.00024947298601236343,
|
| 410 |
+
"loss": 1.6801,
|
| 411 |
+
"step": 67
|
| 412 |
+
},
|
| 413 |
+
{
|
| 414 |
+
"epoch": 0.12,
|
| 415 |
+
"learning_rate": 0.0002494004332953758,
|
| 416 |
+
"loss": 1.9678,
|
| 417 |
+
"step": 68
|
| 418 |
+
},
|
| 419 |
+
{
|
| 420 |
+
"epoch": 0.12,
|
| 421 |
+
"learning_rate": 0.00024932321521420456,
|
| 422 |
+
"loss": 1.9245,
|
| 423 |
+
"step": 69
|
| 424 |
+
},
|
| 425 |
+
{
|
| 426 |
+
"epoch": 0.12,
|
| 427 |
+
"learning_rate": 0.0002492413346647437,
|
| 428 |
+
"loss": 1.5254,
|
| 429 |
+
"step": 70
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.13,
|
| 433 |
+
"learning_rate": 0.00024915479471774286,
|
| 434 |
+
"loss": 1.7283,
|
| 435 |
+
"step": 71
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"epoch": 0.13,
|
| 439 |
+
"learning_rate": 0.00024906359861869216,
|
| 440 |
+
"loss": 1.9968,
|
| 441 |
+
"step": 72
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"epoch": 0.13,
|
| 445 |
+
"learning_rate": 0.0002489677497877003,
|
| 446 |
+
"loss": 1.6559,
|
| 447 |
+
"step": 73
|
| 448 |
+
},
|
| 449 |
+
{
|
| 450 |
+
"epoch": 0.13,
|
| 451 |
+
"learning_rate": 0.0002488672518193665,
|
| 452 |
+
"loss": 1.5518,
|
| 453 |
+
"step": 74
|
| 454 |
+
},
|
| 455 |
+
{
|
| 456 |
+
"epoch": 0.13,
|
| 457 |
+
"learning_rate": 0.0002487621084826458,
|
| 458 |
+
"loss": 1.6201,
|
| 459 |
+
"step": 75
|
| 460 |
+
},
|
| 461 |
+
{
|
| 462 |
+
"epoch": 0.13,
|
| 463 |
+
"learning_rate": 0.0002486523237207072,
|
| 464 |
+
"loss": 1.7592,
|
| 465 |
+
"step": 76
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"epoch": 0.14,
|
| 469 |
+
"learning_rate": 0.00024853790165078654,
|
| 470 |
+
"loss": 1.5929,
|
| 471 |
+
"step": 77
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.14,
|
| 475 |
+
"learning_rate": 0.0002484188465640313,
|
| 476 |
+
"loss": 1.4261,
|
| 477 |
+
"step": 78
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"epoch": 0.14,
|
| 481 |
+
"learning_rate": 0.0002482951629253403,
|
| 482 |
+
"loss": 1.8929,
|
| 483 |
+
"step": 79
|
| 484 |
+
},
|
| 485 |
+
{
|
| 486 |
+
"epoch": 0.14,
|
| 487 |
+
"learning_rate": 0.0002481668553731959,
|
| 488 |
+
"loss": 1.5752,
|
| 489 |
+
"step": 80
|
| 490 |
+
},
|
| 491 |
+
{
|
| 492 |
+
"epoch": 0.14,
|
| 493 |
+
"learning_rate": 0.00024803392871949013,
|
| 494 |
+
"loss": 1.8596,
|
| 495 |
+
"step": 81
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"epoch": 0.15,
|
| 499 |
+
"learning_rate": 0.00024789638794934436,
|
| 500 |
+
"loss": 1.838,
|
| 501 |
+
"step": 82
|
| 502 |
+
},
|
| 503 |
+
{
|
| 504 |
+
"epoch": 0.15,
|
| 505 |
+
"learning_rate": 0.00024775423822092214,
|
| 506 |
+
"loss": 1.7938,
|
| 507 |
+
"step": 83
|
| 508 |
+
},
|
| 509 |
+
{
|
| 510 |
+
"epoch": 0.15,
|
| 511 |
+
"learning_rate": 0.0002476074848652358,
|
| 512 |
+
"loss": 1.6448,
|
| 513 |
+
"step": 84
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.15,
|
| 517 |
+
"learning_rate": 0.0002474561333859467,
|
| 518 |
+
"loss": 1.7674,
|
| 519 |
+
"step": 85
|
| 520 |
+
},
|
| 521 |
+
{
|
| 522 |
+
"epoch": 0.15,
|
| 523 |
+
"learning_rate": 0.00024730018945915864,
|
| 524 |
+
"loss": 1.6526,
|
| 525 |
+
"step": 86
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"epoch": 0.15,
|
| 529 |
+
"learning_rate": 0.000247139658933205,
|
| 530 |
+
"loss": 1.6921,
|
| 531 |
+
"step": 87
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"epoch": 0.16,
|
| 535 |
+
"learning_rate": 0.00024697454782842944,
|
| 536 |
+
"loss": 1.8208,
|
| 537 |
+
"step": 88
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"epoch": 0.16,
|
| 541 |
+
"learning_rate": 0.0002468048623369603,
|
| 542 |
+
"loss": 1.9528,
|
| 543 |
+
"step": 89
|
| 544 |
+
},
|
| 545 |
+
{
|
| 546 |
+
"epoch": 0.16,
|
| 547 |
+
"learning_rate": 0.00024663060882247796,
|
| 548 |
+
"loss": 1.8188,
|
| 549 |
+
"step": 90
|
| 550 |
+
},
|
| 551 |
+
{
|
| 552 |
+
"epoch": 0.16,
|
| 553 |
+
"learning_rate": 0.00024645179381997673,
|
| 554 |
+
"loss": 1.921,
|
| 555 |
+
"step": 91
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.16,
|
| 559 |
+
"learning_rate": 0.00024626842403551927,
|
| 560 |
+
"loss": 1.9332,
|
| 561 |
+
"step": 92
|
| 562 |
+
},
|
| 563 |
+
{
|
| 564 |
+
"epoch": 0.16,
|
| 565 |
+
"learning_rate": 0.0002460805063459853,
|
| 566 |
+
"loss": 1.967,
|
| 567 |
+
"step": 93
|
| 568 |
+
},
|
| 569 |
+
{
|
| 570 |
+
"epoch": 0.17,
|
| 571 |
+
"learning_rate": 0.00024588804779881383,
|
| 572 |
+
"loss": 1.4963,
|
| 573 |
+
"step": 94
|
| 574 |
+
},
|
| 575 |
+
{
|
| 576 |
+
"epoch": 0.17,
|
| 577 |
+
"learning_rate": 0.00024569105561173866,
|
| 578 |
+
"loss": 1.6944,
|
| 579 |
+
"step": 95
|
| 580 |
+
},
|
| 581 |
+
{
|
| 582 |
+
"epoch": 0.17,
|
| 583 |
+
"learning_rate": 0.00024548953717251783,
|
| 584 |
+
"loss": 1.9083,
|
| 585 |
+
"step": 96
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"epoch": 0.17,
|
| 589 |
+
"learning_rate": 0.0002452835000386563,
|
| 590 |
+
"loss": 1.7368,
|
| 591 |
+
"step": 97
|
| 592 |
+
},
|
| 593 |
+
{
|
| 594 |
+
"epoch": 0.17,
|
| 595 |
+
"learning_rate": 0.000245072951937123,
|
| 596 |
+
"loss": 1.6183,
|
| 597 |
+
"step": 98
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 0.18,
|
| 601 |
+
"learning_rate": 0.00024485790076406047,
|
| 602 |
+
"loss": 1.7917,
|
| 603 |
+
"step": 99
|
| 604 |
+
},
|
| 605 |
+
{
|
| 606 |
+
"epoch": 0.18,
|
| 607 |
+
"learning_rate": 0.00024463835458448925,
|
| 608 |
+
"loss": 2.1032,
|
| 609 |
+
"step": 100
|
| 610 |
+
},
|
| 611 |
+
{
|
| 612 |
+
"epoch": 0.18,
|
| 613 |
+
"learning_rate": 0.0002444143216320052,
|
| 614 |
+
"loss": 1.8451,
|
| 615 |
+
"step": 101
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"epoch": 0.18,
|
| 619 |
+
"learning_rate": 0.0002441858103084705,
|
| 620 |
+
"loss": 1.7479,
|
| 621 |
+
"step": 102
|
| 622 |
+
},
|
| 623 |
+
{
|
| 624 |
+
"epoch": 0.18,
|
| 625 |
+
"learning_rate": 0.000243952829183699,
|
| 626 |
+
"loss": 1.8158,
|
| 627 |
+
"step": 103
|
| 628 |
+
},
|
| 629 |
+
{
|
| 630 |
+
"epoch": 0.18,
|
| 631 |
+
"learning_rate": 0.00024371538699513443,
|
| 632 |
+
"loss": 1.9275,
|
| 633 |
+
"step": 104
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"epoch": 0.19,
|
| 637 |
+
"learning_rate": 0.00024347349264752303,
|
| 638 |
+
"loss": 1.7759,
|
| 639 |
+
"step": 105
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 0.19,
|
| 643 |
+
"learning_rate": 0.00024322715521257933,
|
| 644 |
+
"loss": 2.0328,
|
| 645 |
+
"step": 106
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"epoch": 0.19,
|
| 649 |
+
"learning_rate": 0.00024297638392864617,
|
| 650 |
+
"loss": 1.8839,
|
| 651 |
+
"step": 107
|
| 652 |
+
},
|
| 653 |
+
{
|
| 654 |
+
"epoch": 0.19,
|
| 655 |
+
"learning_rate": 0.00024272118820034804,
|
| 656 |
+
"loss": 1.8443,
|
| 657 |
+
"step": 108
|
| 658 |
+
},
|
| 659 |
+
{
|
| 660 |
+
"epoch": 0.19,
|
| 661 |
+
"learning_rate": 0.00024246157759823855,
|
| 662 |
+
"loss": 1.9779,
|
| 663 |
+
"step": 109
|
| 664 |
+
},
|
| 665 |
+
{
|
| 666 |
+
"epoch": 0.19,
|
| 667 |
+
"learning_rate": 0.00024219756185844132,
|
| 668 |
+
"loss": 1.6495,
|
| 669 |
+
"step": 110
|
| 670 |
+
},
|
| 671 |
+
{
|
| 672 |
+
"epoch": 0.2,
|
| 673 |
+
"learning_rate": 0.00024192915088228512,
|
| 674 |
+
"loss": 1.6645,
|
| 675 |
+
"step": 111
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"epoch": 0.2,
|
| 679 |
+
"learning_rate": 0.00024165635473593215,
|
| 680 |
+
"loss": 1.4214,
|
| 681 |
+
"step": 112
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 0.2,
|
| 685 |
+
"learning_rate": 0.00024137918365000095,
|
| 686 |
+
"loss": 1.6603,
|
| 687 |
+
"step": 113
|
| 688 |
+
},
|
| 689 |
+
{
|
| 690 |
+
"epoch": 0.2,
|
| 691 |
+
"learning_rate": 0.00024109764801918244,
|
| 692 |
+
"loss": 1.4227,
|
| 693 |
+
"step": 114
|
| 694 |
+
},
|
| 695 |
+
{
|
| 696 |
+
"epoch": 0.2,
|
| 697 |
+
"learning_rate": 0.0002408117584018502,
|
| 698 |
+
"loss": 1.3033,
|
| 699 |
+
"step": 115
|
| 700 |
+
},
|
| 701 |
+
{
|
| 702 |
+
"epoch": 0.21,
|
| 703 |
+
"learning_rate": 0.00024052152551966457,
|
| 704 |
+
"loss": 2.0312,
|
| 705 |
+
"step": 116
|
| 706 |
+
},
|
| 707 |
+
{
|
| 708 |
+
"epoch": 0.21,
|
| 709 |
+
"learning_rate": 0.00024022696025717023,
|
| 710 |
+
"loss": 1.8867,
|
| 711 |
+
"step": 117
|
| 712 |
+
},
|
| 713 |
+
{
|
| 714 |
+
"epoch": 0.21,
|
| 715 |
+
"learning_rate": 0.00023992807366138847,
|
| 716 |
+
"loss": 1.6906,
|
| 717 |
+
"step": 118
|
| 718 |
+
},
|
| 719 |
+
{
|
| 720 |
+
"epoch": 0.21,
|
| 721 |
+
"learning_rate": 0.00023962487694140263,
|
| 722 |
+
"loss": 1.595,
|
| 723 |
+
"step": 119
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 0.21,
|
| 727 |
+
"learning_rate": 0.00023931738146793763,
|
| 728 |
+
"loss": 1.5583,
|
| 729 |
+
"step": 120
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"epoch": 0.21,
|
| 733 |
+
"learning_rate": 0.00023900559877293383,
|
| 734 |
+
"loss": 1.9068,
|
| 735 |
+
"step": 121
|
| 736 |
+
},
|
| 737 |
+
{
|
| 738 |
+
"epoch": 0.22,
|
| 739 |
+
"learning_rate": 0.00023868954054911428,
|
| 740 |
+
"loss": 1.4536,
|
| 741 |
+
"step": 122
|
| 742 |
+
},
|
| 743 |
+
{
|
| 744 |
+
"epoch": 0.22,
|
| 745 |
+
"learning_rate": 0.00023836921864954635,
|
| 746 |
+
"loss": 1.7105,
|
| 747 |
+
"step": 123
|
| 748 |
+
},
|
| 749 |
+
{
|
| 750 |
+
"epoch": 0.22,
|
| 751 |
+
"learning_rate": 0.0002380446450871972,
|
| 752 |
+
"loss": 1.4355,
|
| 753 |
+
"step": 124
|
| 754 |
+
},
|
| 755 |
+
{
|
| 756 |
+
"epoch": 0.22,
|
| 757 |
+
"learning_rate": 0.00023771583203448322,
|
| 758 |
+
"loss": 1.7782,
|
| 759 |
+
"step": 125
|
| 760 |
+
},
|
| 761 |
+
{
|
| 762 |
+
"epoch": 0.22,
|
| 763 |
+
"learning_rate": 0.00023738279182281352,
|
| 764 |
+
"loss": 1.9977,
|
| 765 |
+
"step": 126
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 0.22,
|
| 769 |
+
"learning_rate": 0.00023704553694212752,
|
| 770 |
+
"loss": 1.5658,
|
| 771 |
+
"step": 127
|
| 772 |
+
},
|
| 773 |
+
{
|
| 774 |
+
"epoch": 0.23,
|
| 775 |
+
"learning_rate": 0.00023670408004042653,
|
| 776 |
+
"loss": 1.5389,
|
| 777 |
+
"step": 128
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
"epoch": 0.23,
|
| 781 |
+
"learning_rate": 0.00023635843392329938,
|
| 782 |
+
"loss": 1.7435,
|
| 783 |
+
"step": 129
|
| 784 |
+
},
|
| 785 |
+
{
|
| 786 |
+
"epoch": 0.23,
|
| 787 |
+
"learning_rate": 0.00023600861155344223,
|
| 788 |
+
"loss": 1.5706,
|
| 789 |
+
"step": 130
|
| 790 |
+
},
|
| 791 |
+
{
|
| 792 |
+
"epoch": 0.23,
|
| 793 |
+
"learning_rate": 0.00023565462605017228,
|
| 794 |
+
"loss": 1.8396,
|
| 795 |
+
"step": 131
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"epoch": 0.23,
|
| 799 |
+
"learning_rate": 0.00023529649068893598,
|
| 800 |
+
"loss": 1.8073,
|
| 801 |
+
"step": 132
|
| 802 |
+
},
|
| 803 |
+
{
|
| 804 |
+
"epoch": 0.24,
|
| 805 |
+
"learning_rate": 0.00023493421890081112,
|
| 806 |
+
"loss": 1.9954,
|
| 807 |
+
"step": 133
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 0.24,
|
| 811 |
+
"learning_rate": 0.00023456782427200295,
|
| 812 |
+
"loss": 1.9553,
|
| 813 |
+
"step": 134
|
| 814 |
+
},
|
| 815 |
+
{
|
| 816 |
+
"epoch": 0.24,
|
| 817 |
+
"learning_rate": 0.0002341973205433348,
|
| 818 |
+
"loss": 1.2249,
|
| 819 |
+
"step": 135
|
| 820 |
+
},
|
| 821 |
+
{
|
| 822 |
+
"epoch": 0.24,
|
| 823 |
+
"learning_rate": 0.0002338227216097328,
|
| 824 |
+
"loss": 1.8021,
|
| 825 |
+
"step": 136
|
| 826 |
+
},
|
| 827 |
+
{
|
| 828 |
+
"epoch": 0.24,
|
| 829 |
+
"learning_rate": 0.00023344404151970464,
|
| 830 |
+
"loss": 1.8086,
|
| 831 |
+
"step": 137
|
| 832 |
+
},
|
| 833 |
+
{
|
| 834 |
+
"epoch": 0.24,
|
| 835 |
+
"learning_rate": 0.00023306129447481282,
|
| 836 |
+
"loss": 1.4283,
|
| 837 |
+
"step": 138
|
| 838 |
+
},
|
| 839 |
+
{
|
| 840 |
+
"epoch": 0.25,
|
| 841 |
+
"learning_rate": 0.00023267449482914203,
|
| 842 |
+
"loss": 1.8477,
|
| 843 |
+
"step": 139
|
| 844 |
+
},
|
| 845 |
+
{
|
| 846 |
+
"epoch": 0.25,
|
| 847 |
+
"learning_rate": 0.0002322836570887608,
|
| 848 |
+
"loss": 1.3233,
|
| 849 |
+
"step": 140
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 0.25,
|
| 853 |
+
"learning_rate": 0.0002318887959111776,
|
| 854 |
+
"loss": 1.7511,
|
| 855 |
+
"step": 141
|
| 856 |
+
},
|
| 857 |
+
{
|
| 858 |
+
"epoch": 0.25,
|
| 859 |
+
"learning_rate": 0.0002314899261047909,
|
| 860 |
+
"loss": 1.9737,
|
| 861 |
+
"step": 142
|
| 862 |
+
},
|
| 863 |
+
{
|
| 864 |
+
"epoch": 0.25,
|
| 865 |
+
"learning_rate": 0.00023108706262833407,
|
| 866 |
+
"loss": 1.6347,
|
| 867 |
+
"step": 143
|
| 868 |
+
},
|
| 869 |
+
{
|
| 870 |
+
"epoch": 0.25,
|
| 871 |
+
"learning_rate": 0.00023068022059031425,
|
| 872 |
+
"loss": 1.9142,
|
| 873 |
+
"step": 144
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"epoch": 0.26,
|
| 877 |
+
"learning_rate": 0.00023026941524844572,
|
| 878 |
+
"loss": 1.7408,
|
| 879 |
+
"step": 145
|
| 880 |
+
},
|
| 881 |
+
{
|
| 882 |
+
"epoch": 0.26,
|
| 883 |
+
"learning_rate": 0.00022985466200907783,
|
| 884 |
+
"loss": 1.3576,
|
| 885 |
+
"step": 146
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"epoch": 0.26,
|
| 889 |
+
"learning_rate": 0.00022943597642661705,
|
| 890 |
+
"loss": 1.6058,
|
| 891 |
+
"step": 147
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 0.26,
|
| 895 |
+
"learning_rate": 0.00022901337420294378,
|
| 896 |
+
"loss": 1.6575,
|
| 897 |
+
"step": 148
|
| 898 |
+
},
|
| 899 |
+
{
|
| 900 |
+
"epoch": 0.26,
|
| 901 |
+
"learning_rate": 0.0002285868711868233,
|
| 902 |
+
"loss": 1.3605,
|
| 903 |
+
"step": 149
|
| 904 |
+
},
|
| 905 |
+
{
|
| 906 |
+
"epoch": 0.27,
|
| 907 |
+
"learning_rate": 0.00022815648337331168,
|
| 908 |
+
"loss": 1.4417,
|
| 909 |
+
"step": 150
|
| 910 |
+
},
|
| 911 |
+
{
|
| 912 |
+
"epoch": 0.27,
|
| 913 |
+
"learning_rate": 0.00022772222690315563,
|
| 914 |
+
"loss": 1.684,
|
| 915 |
+
"step": 151
|
| 916 |
+
},
|
| 917 |
+
{
|
| 918 |
+
"epoch": 0.27,
|
| 919 |
+
"learning_rate": 0.0002272841180621874,
|
| 920 |
+
"loss": 1.8368,
|
| 921 |
+
"step": 152
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"epoch": 0.27,
|
| 925 |
+
"learning_rate": 0.00022684217328071383,
|
| 926 |
+
"loss": 1.6624,
|
| 927 |
+
"step": 153
|
| 928 |
+
},
|
| 929 |
+
{
|
| 930 |
+
"epoch": 0.27,
|
| 931 |
+
"learning_rate": 0.00022639640913290027,
|
| 932 |
+
"loss": 1.8384,
|
| 933 |
+
"step": 154
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 0.27,
|
| 937 |
+
"learning_rate": 0.00022594684233614908,
|
| 938 |
+
"loss": 1.4881,
|
| 939 |
+
"step": 155
|
| 940 |
+
},
|
| 941 |
+
{
|
| 942 |
+
"epoch": 0.28,
|
| 943 |
+
"learning_rate": 0.00022549348975047252,
|
| 944 |
+
"loss": 1.7802,
|
| 945 |
+
"step": 156
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"epoch": 0.28,
|
| 949 |
+
"learning_rate": 0.00022503636837786052,
|
| 950 |
+
"loss": 1.6981,
|
| 951 |
+
"step": 157
|
| 952 |
+
},
|
| 953 |
+
{
|
| 954 |
+
"epoch": 0.28,
|
| 955 |
+
"learning_rate": 0.00022457549536164306,
|
| 956 |
+
"loss": 1.6845,
|
| 957 |
+
"step": 158
|
| 958 |
+
},
|
| 959 |
+
{
|
| 960 |
+
"epoch": 0.28,
|
| 961 |
+
"learning_rate": 0.00022411088798584728,
|
| 962 |
+
"loss": 1.8524,
|
| 963 |
+
"step": 159
|
| 964 |
+
},
|
| 965 |
+
{
|
| 966 |
+
"epoch": 0.28,
|
| 967 |
+
"learning_rate": 0.00022364256367454923,
|
| 968 |
+
"loss": 1.7893,
|
| 969 |
+
"step": 160
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"epoch": 0.28,
|
| 973 |
+
"learning_rate": 0.00022317053999122038,
|
| 974 |
+
"loss": 1.5371,
|
| 975 |
+
"step": 161
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 0.29,
|
| 979 |
+
"learning_rate": 0.00022269483463806917,
|
| 980 |
+
"loss": 1.7511,
|
| 981 |
+
"step": 162
|
| 982 |
+
},
|
| 983 |
+
{
|
| 984 |
+
"epoch": 0.29,
|
| 985 |
+
"learning_rate": 0.00022221546545537674,
|
| 986 |
+
"loss": 1.4536,
|
| 987 |
+
"step": 163
|
| 988 |
+
},
|
| 989 |
+
{
|
| 990 |
+
"epoch": 0.29,
|
| 991 |
+
"learning_rate": 0.00022173245042082822,
|
| 992 |
+
"loss": 1.7809,
|
| 993 |
+
"step": 164
|
| 994 |
+
},
|
| 995 |
+
{
|
| 996 |
+
"epoch": 0.29,
|
| 997 |
+
"learning_rate": 0.0002212458076488384,
|
| 998 |
+
"loss": 1.7447,
|
| 999 |
+
"step": 165
|
| 1000 |
+
},
|
| 1001 |
+
{
|
| 1002 |
+
"epoch": 0.29,
|
| 1003 |
+
"learning_rate": 0.00022075555538987224,
|
| 1004 |
+
"loss": 2.1818,
|
| 1005 |
+
"step": 166
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"epoch": 0.3,
|
| 1009 |
+
"learning_rate": 0.0002202617120297607,
|
| 1010 |
+
"loss": 1.8901,
|
| 1011 |
+
"step": 167
|
| 1012 |
+
},
|
| 1013 |
+
{
|
| 1014 |
+
"epoch": 0.3,
|
| 1015 |
+
"learning_rate": 0.00021976429608901093,
|
| 1016 |
+
"loss": 1.6585,
|
| 1017 |
+
"step": 168
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 0.3,
|
| 1021 |
+
"learning_rate": 0.00021926332622211205,
|
| 1022 |
+
"loss": 1.9877,
|
| 1023 |
+
"step": 169
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"epoch": 0.3,
|
| 1027 |
+
"learning_rate": 0.0002187588212168351,
|
| 1028 |
+
"loss": 1.4926,
|
| 1029 |
+
"step": 170
|
| 1030 |
+
},
|
| 1031 |
+
{
|
| 1032 |
+
"epoch": 0.3,
|
| 1033 |
+
"learning_rate": 0.00021825079999352893,
|
| 1034 |
+
"loss": 1.7696,
|
| 1035 |
+
"step": 171
|
| 1036 |
+
},
|
| 1037 |
+
{
|
| 1038 |
+
"epoch": 0.3,
|
| 1039 |
+
"learning_rate": 0.0002177392816044102,
|
| 1040 |
+
"loss": 1.9484,
|
| 1041 |
+
"step": 172
|
| 1042 |
+
},
|
| 1043 |
+
{
|
| 1044 |
+
"epoch": 0.31,
|
| 1045 |
+
"learning_rate": 0.00021722428523284927,
|
| 1046 |
+
"loss": 1.6379,
|
| 1047 |
+
"step": 173
|
| 1048 |
+
},
|
| 1049 |
+
{
|
| 1050 |
+
"epoch": 0.31,
|
| 1051 |
+
"learning_rate": 0.00021670583019265034,
|
| 1052 |
+
"loss": 1.4783,
|
| 1053 |
+
"step": 174
|
| 1054 |
+
},
|
| 1055 |
+
{
|
| 1056 |
+
"epoch": 0.31,
|
| 1057 |
+
"learning_rate": 0.0002161839359273276,
|
| 1058 |
+
"loss": 1.6047,
|
| 1059 |
+
"step": 175
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 0.31,
|
| 1063 |
+
"learning_rate": 0.00021565862200937565,
|
| 1064 |
+
"loss": 1.6504,
|
| 1065 |
+
"step": 176
|
| 1066 |
+
},
|
| 1067 |
+
{
|
| 1068 |
+
"epoch": 0.31,
|
| 1069 |
+
"learning_rate": 0.00021512990813953562,
|
| 1070 |
+
"loss": 1.6248,
|
| 1071 |
+
"step": 177
|
| 1072 |
+
},
|
| 1073 |
+
{
|
| 1074 |
+
"epoch": 0.32,
|
| 1075 |
+
"learning_rate": 0.00021459781414605642,
|
| 1076 |
+
"loss": 2.0182,
|
| 1077 |
+
"step": 178
|
| 1078 |
+
},
|
| 1079 |
+
{
|
| 1080 |
+
"epoch": 0.32,
|
| 1081 |
+
"learning_rate": 0.000214062359983951,
|
| 1082 |
+
"loss": 1.7979,
|
| 1083 |
+
"step": 179
|
| 1084 |
+
},
|
| 1085 |
+
{
|
| 1086 |
+
"epoch": 0.32,
|
| 1087 |
+
"learning_rate": 0.00021352356573424807,
|
| 1088 |
+
"loss": 1.7023,
|
| 1089 |
+
"step": 180
|
| 1090 |
+
},
|
| 1091 |
+
{
|
| 1092 |
+
"epoch": 0.32,
|
| 1093 |
+
"learning_rate": 0.00021298145160323896,
|
| 1094 |
+
"loss": 1.6911,
|
| 1095 |
+
"step": 181
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"epoch": 0.32,
|
| 1099 |
+
"learning_rate": 0.00021243603792171976,
|
| 1100 |
+
"loss": 1.8985,
|
| 1101 |
+
"step": 182
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 0.32,
|
| 1105 |
+
"learning_rate": 0.00021188734514422902,
|
| 1106 |
+
"loss": 2.1085,
|
| 1107 |
+
"step": 183
|
| 1108 |
+
},
|
| 1109 |
+
{
|
| 1110 |
+
"epoch": 0.33,
|
| 1111 |
+
"learning_rate": 0.00021133539384828054,
|
| 1112 |
+
"loss": 1.8299,
|
| 1113 |
+
"step": 184
|
| 1114 |
+
},
|
| 1115 |
+
{
|
| 1116 |
+
"epoch": 0.33,
|
| 1117 |
+
"learning_rate": 0.00021078020473359172,
|
| 1118 |
+
"loss": 1.8975,
|
| 1119 |
+
"step": 185
|
| 1120 |
+
},
|
| 1121 |
+
{
|
| 1122 |
+
"epoch": 0.33,
|
| 1123 |
+
"learning_rate": 0.00021022179862130704,
|
| 1124 |
+
"loss": 1.5791,
|
| 1125 |
+
"step": 186
|
| 1126 |
+
},
|
| 1127 |
+
{
|
| 1128 |
+
"epoch": 0.33,
|
| 1129 |
+
"learning_rate": 0.00020966019645321765,
|
| 1130 |
+
"loss": 1.7475,
|
| 1131 |
+
"step": 187
|
| 1132 |
+
},
|
| 1133 |
+
{
|
| 1134 |
+
"epoch": 0.33,
|
| 1135 |
+
"learning_rate": 0.0002090954192909755,
|
| 1136 |
+
"loss": 1.6978,
|
| 1137 |
+
"step": 188
|
| 1138 |
+
},
|
| 1139 |
+
{
|
| 1140 |
+
"epoch": 0.33,
|
| 1141 |
+
"learning_rate": 0.00020852748831530382,
|
| 1142 |
+
"loss": 1.7039,
|
| 1143 |
+
"step": 189
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 0.34,
|
| 1147 |
+
"learning_rate": 0.00020795642482520266,
|
| 1148 |
+
"loss": 1.5206,
|
| 1149 |
+
"step": 190
|
| 1150 |
+
},
|
| 1151 |
+
{
|
| 1152 |
+
"epoch": 0.34,
|
| 1153 |
+
"learning_rate": 0.00020738225023715013,
|
| 1154 |
+
"loss": 1.6684,
|
| 1155 |
+
"step": 191
|
| 1156 |
+
},
|
| 1157 |
+
{
|
| 1158 |
+
"epoch": 0.34,
|
| 1159 |
+
"learning_rate": 0.00020680498608429914,
|
| 1160 |
+
"loss": 1.7339,
|
| 1161 |
+
"step": 192
|
| 1162 |
+
},
|
| 1163 |
+
{
|
| 1164 |
+
"epoch": 0.34,
|
| 1165 |
+
"learning_rate": 0.00020622465401566999,
|
| 1166 |
+
"loss": 1.6174,
|
| 1167 |
+
"step": 193
|
| 1168 |
+
},
|
| 1169 |
+
{
|
| 1170 |
+
"epoch": 0.34,
|
| 1171 |
+
"learning_rate": 0.00020564127579533831,
|
| 1172 |
+
"loss": 1.6451,
|
| 1173 |
+
"step": 194
|
| 1174 |
+
},
|
| 1175 |
+
{
|
| 1176 |
+
"epoch": 0.35,
|
| 1177 |
+
"learning_rate": 0.00020505487330161915,
|
| 1178 |
+
"loss": 1.6214,
|
| 1179 |
+
"step": 195
|
| 1180 |
+
},
|
| 1181 |
+
{
|
| 1182 |
+
"epoch": 0.35,
|
| 1183 |
+
"learning_rate": 0.00020446546852624604,
|
| 1184 |
+
"loss": 1.7493,
|
| 1185 |
+
"step": 196
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 0.35,
|
| 1189 |
+
"learning_rate": 0.00020387308357354655,
|
| 1190 |
+
"loss": 1.7067,
|
| 1191 |
+
"step": 197
|
| 1192 |
+
},
|
| 1193 |
+
{
|
| 1194 |
+
"epoch": 0.35,
|
| 1195 |
+
"learning_rate": 0.0002032777406596133,
|
| 1196 |
+
"loss": 1.6918,
|
| 1197 |
+
"step": 198
|
| 1198 |
+
},
|
| 1199 |
+
{
|
| 1200 |
+
"epoch": 0.35,
|
| 1201 |
+
"learning_rate": 0.00020267946211147058,
|
| 1202 |
+
"loss": 1.9448,
|
| 1203 |
+
"step": 199
|
| 1204 |
+
},
|
| 1205 |
+
{
|
| 1206 |
+
"epoch": 0.35,
|
| 1207 |
+
"learning_rate": 0.00020207827036623744,
|
| 1208 |
+
"loss": 1.8517,
|
| 1209 |
+
"step": 200
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"epoch": 0.36,
|
| 1213 |
+
"learning_rate": 0.0002014741879702856,
|
| 1214 |
+
"loss": 2.0169,
|
| 1215 |
+
"step": 201
|
| 1216 |
+
},
|
| 1217 |
+
{
|
| 1218 |
+
"epoch": 0.36,
|
| 1219 |
+
"learning_rate": 0.0002008672375783946,
|
| 1220 |
+
"loss": 2.1721,
|
| 1221 |
+
"step": 202
|
| 1222 |
+
},
|
| 1223 |
+
{
|
| 1224 |
+
"epoch": 0.36,
|
| 1225 |
+
"learning_rate": 0.00020025744195290167,
|
| 1226 |
+
"loss": 1.5175,
|
| 1227 |
+
"step": 203
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 0.36,
|
| 1231 |
+
"learning_rate": 0.00019964482396284827,
|
| 1232 |
+
"loss": 1.6105,
|
| 1233 |
+
"step": 204
|
| 1234 |
+
},
|
| 1235 |
+
{
|
| 1236 |
+
"epoch": 0.36,
|
| 1237 |
+
"learning_rate": 0.0001990294065831225,
|
| 1238 |
+
"loss": 1.9778,
|
| 1239 |
+
"step": 205
|
| 1240 |
+
},
|
| 1241 |
+
{
|
| 1242 |
+
"epoch": 0.36,
|
| 1243 |
+
"learning_rate": 0.00019841121289359737,
|
| 1244 |
+
"loss": 1.6379,
|
| 1245 |
+
"step": 206
|
| 1246 |
+
},
|
| 1247 |
+
{
|
| 1248 |
+
"epoch": 0.37,
|
| 1249 |
+
"learning_rate": 0.0001977902660782652,
|
| 1250 |
+
"loss": 1.7973,
|
| 1251 |
+
"step": 207
|
| 1252 |
+
},
|
| 1253 |
+
{
|
| 1254 |
+
"epoch": 0.37,
|
| 1255 |
+
"learning_rate": 0.00019716658942436834,
|
| 1256 |
+
"loss": 1.6022,
|
| 1257 |
+
"step": 208
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"epoch": 0.37,
|
| 1261 |
+
"learning_rate": 0.00019654020632152563,
|
| 1262 |
+
"loss": 1.4371,
|
| 1263 |
+
"step": 209
|
| 1264 |
+
},
|
| 1265 |
+
{
|
| 1266 |
+
"epoch": 0.37,
|
| 1267 |
+
"learning_rate": 0.00019591114026085537,
|
| 1268 |
+
"loss": 1.8489,
|
| 1269 |
+
"step": 210
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 0.37,
|
| 1273 |
+
"learning_rate": 0.0001952794148340943,
|
| 1274 |
+
"loss": 1.6484,
|
| 1275 |
+
"step": 211
|
| 1276 |
+
},
|
| 1277 |
+
{
|
| 1278 |
+
"epoch": 0.38,
|
| 1279 |
+
"learning_rate": 0.00019464505373271274,
|
| 1280 |
+
"loss": 1.841,
|
| 1281 |
+
"step": 212
|
| 1282 |
+
},
|
| 1283 |
+
{
|
| 1284 |
+
"epoch": 0.38,
|
| 1285 |
+
"learning_rate": 0.00019400808074702624,
|
| 1286 |
+
"loss": 1.4165,
|
| 1287 |
+
"step": 213
|
| 1288 |
+
},
|
| 1289 |
+
{
|
| 1290 |
+
"epoch": 0.38,
|
| 1291 |
+
"learning_rate": 0.00019336851976530338,
|
| 1292 |
+
"loss": 1.8259,
|
| 1293 |
+
"step": 214
|
| 1294 |
+
},
|
| 1295 |
+
{
|
| 1296 |
+
"epoch": 0.38,
|
| 1297 |
+
"learning_rate": 0.0001927263947728697,
|
| 1298 |
+
"loss": 1.8661,
|
| 1299 |
+
"step": 215
|
| 1300 |
+
},
|
| 1301 |
+
{
|
| 1302 |
+
"epoch": 0.38,
|
| 1303 |
+
"learning_rate": 0.00019208172985120837,
|
| 1304 |
+
"loss": 1.4957,
|
| 1305 |
+
"step": 216
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"epoch": 0.38,
|
| 1309 |
+
"learning_rate": 0.000191434549177057,
|
| 1310 |
+
"loss": 1.3717,
|
| 1311 |
+
"step": 217
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 0.39,
|
| 1315 |
+
"learning_rate": 0.00019078487702150102,
|
| 1316 |
+
"loss": 1.5568,
|
| 1317 |
+
"step": 218
|
| 1318 |
+
},
|
| 1319 |
+
{
|
| 1320 |
+
"epoch": 0.39,
|
| 1321 |
+
"learning_rate": 0.0001901327377490633,
|
| 1322 |
+
"loss": 1.512,
|
| 1323 |
+
"step": 219
|
| 1324 |
+
},
|
| 1325 |
+
{
|
| 1326 |
+
"epoch": 0.39,
|
| 1327 |
+
"learning_rate": 0.00018947815581679052,
|
| 1328 |
+
"loss": 1.7289,
|
| 1329 |
+
"step": 220
|
| 1330 |
+
},
|
| 1331 |
+
{
|
| 1332 |
+
"epoch": 0.39,
|
| 1333 |
+
"learning_rate": 0.00018882115577333592,
|
| 1334 |
+
"loss": 1.6628,
|
| 1335 |
+
"step": 221
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"epoch": 0.39,
|
| 1339 |
+
"learning_rate": 0.00018816176225803876,
|
| 1340 |
+
"loss": 1.8897,
|
| 1341 |
+
"step": 222
|
| 1342 |
+
},
|
| 1343 |
+
{
|
| 1344 |
+
"epoch": 0.39,
|
| 1345 |
+
"learning_rate": 0.0001875,
|
| 1346 |
+
"loss": 1.2269,
|
| 1347 |
+
"step": 223
|
| 1348 |
+
},
|
| 1349 |
+
{
|
| 1350 |
+
"epoch": 0.4,
|
| 1351 |
+
"learning_rate": 0.00018683589381715532,
|
| 1352 |
+
"loss": 1.9278,
|
| 1353 |
+
"step": 224
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 0.4,
|
| 1357 |
+
"learning_rate": 0.00018616946861534396,
|
| 1358 |
+
"loss": 1.5643,
|
| 1359 |
+
"step": 225
|
| 1360 |
+
},
|
| 1361 |
+
{
|
| 1362 |
+
"epoch": 0.4,
|
| 1363 |
+
"learning_rate": 0.0001855007493873749,
|
| 1364 |
+
"loss": 1.8058,
|
| 1365 |
+
"step": 226
|
| 1366 |
+
},
|
| 1367 |
+
{
|
| 1368 |
+
"epoch": 0.4,
|
| 1369 |
+
"learning_rate": 0.0001848297612120895,
|
| 1370 |
+
"loss": 1.6883,
|
| 1371 |
+
"step": 227
|
| 1372 |
+
},
|
| 1373 |
+
{
|
| 1374 |
+
"epoch": 0.4,
|
| 1375 |
+
"learning_rate": 0.00018415652925342105,
|
| 1376 |
+
"loss": 1.4985,
|
| 1377 |
+
"step": 228
|
| 1378 |
+
},
|
| 1379 |
+
{
|
| 1380 |
+
"epoch": 0.41,
|
| 1381 |
+
"learning_rate": 0.000183481078759451,
|
| 1382 |
+
"loss": 1.9467,
|
| 1383 |
+
"step": 229
|
| 1384 |
+
},
|
| 1385 |
+
{
|
| 1386 |
+
"epoch": 0.41,
|
| 1387 |
+
"learning_rate": 0.00018280343506146197,
|
| 1388 |
+
"loss": 1.6599,
|
| 1389 |
+
"step": 230
|
| 1390 |
+
},
|
| 1391 |
+
{
|
| 1392 |
+
"epoch": 0.41,
|
| 1393 |
+
"learning_rate": 0.00018212362357298797,
|
| 1394 |
+
"loss": 1.6791,
|
| 1395 |
+
"step": 231
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 0.41,
|
| 1399 |
+
"learning_rate": 0.0001814416697888612,
|
| 1400 |
+
"loss": 2.1714,
|
| 1401 |
+
"step": 232
|
| 1402 |
+
},
|
| 1403 |
+
{
|
| 1404 |
+
"epoch": 0.41,
|
| 1405 |
+
"learning_rate": 0.00018075759928425582,
|
| 1406 |
+
"loss": 1.6677,
|
| 1407 |
+
"step": 233
|
| 1408 |
+
},
|
| 1409 |
+
{
|
| 1410 |
+
"epoch": 0.41,
|
| 1411 |
+
"learning_rate": 0.00018007143771372916,
|
| 1412 |
+
"loss": 1.9834,
|
| 1413 |
+
"step": 234
|
| 1414 |
+
},
|
| 1415 |
+
{
|
| 1416 |
+
"epoch": 0.42,
|
| 1417 |
+
"learning_rate": 0.00017938321081025917,
|
| 1418 |
+
"loss": 1.8803,
|
| 1419 |
+
"step": 235
|
| 1420 |
+
},
|
| 1421 |
+
{
|
| 1422 |
+
"epoch": 0.42,
|
| 1423 |
+
"learning_rate": 0.00017869294438427964,
|
| 1424 |
+
"loss": 1.8268,
|
| 1425 |
+
"step": 236
|
| 1426 |
+
},
|
| 1427 |
+
{
|
| 1428 |
+
"epoch": 0.42,
|
| 1429 |
+
"learning_rate": 0.0001780006643227121,
|
| 1430 |
+
"loss": 1.9126,
|
| 1431 |
+
"step": 237
|
| 1432 |
+
},
|
| 1433 |
+
{
|
| 1434 |
+
"epoch": 0.42,
|
| 1435 |
+
"learning_rate": 0.00017730639658799512,
|
| 1436 |
+
"loss": 1.3397,
|
| 1437 |
+
"step": 238
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 0.42,
|
| 1441 |
+
"learning_rate": 0.00017661016721711063,
|
| 1442 |
+
"loss": 1.5539,
|
| 1443 |
+
"step": 239
|
| 1444 |
+
},
|
| 1445 |
+
{
|
| 1446 |
+
"epoch": 0.42,
|
| 1447 |
+
"learning_rate": 0.00017591200232060719,
|
| 1448 |
+
"loss": 1.8692,
|
| 1449 |
+
"step": 240
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"epoch": 0.43,
|
| 1453 |
+
"learning_rate": 0.0001752119280816212,
|
| 1454 |
+
"loss": 1.5348,
|
| 1455 |
+
"step": 241
|
| 1456 |
+
},
|
| 1457 |
+
{
|
| 1458 |
+
"epoch": 0.43,
|
| 1459 |
+
"learning_rate": 0.00017450997075489462,
|
| 1460 |
+
"loss": 1.9957,
|
| 1461 |
+
"step": 242
|
| 1462 |
+
},
|
| 1463 |
+
{
|
| 1464 |
+
"epoch": 0.43,
|
| 1465 |
+
"learning_rate": 0.00017380615666579054,
|
| 1466 |
+
"loss": 1.7454,
|
| 1467 |
+
"step": 243
|
| 1468 |
+
},
|
| 1469 |
+
{
|
| 1470 |
+
"epoch": 0.43,
|
| 1471 |
+
"learning_rate": 0.00017310051220930574,
|
| 1472 |
+
"loss": 1.8623,
|
| 1473 |
+
"step": 244
|
| 1474 |
+
},
|
| 1475 |
+
{
|
| 1476 |
+
"epoch": 0.43,
|
| 1477 |
+
"learning_rate": 0.00017239306384908096,
|
| 1478 |
+
"loss": 1.9291,
|
| 1479 |
+
"step": 245
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 0.44,
|
| 1483 |
+
"learning_rate": 0.00017168383811640842,
|
| 1484 |
+
"loss": 1.6059,
|
| 1485 |
+
"step": 246
|
| 1486 |
+
},
|
| 1487 |
+
{
|
| 1488 |
+
"epoch": 0.44,
|
| 1489 |
+
"learning_rate": 0.00017097286160923668,
|
| 1490 |
+
"loss": 1.8271,
|
| 1491 |
+
"step": 247
|
| 1492 |
+
},
|
| 1493 |
+
{
|
| 1494 |
+
"epoch": 0.44,
|
| 1495 |
+
"learning_rate": 0.0001702601609911733,
|
| 1496 |
+
"loss": 1.8032,
|
| 1497 |
+
"step": 248
|
| 1498 |
+
},
|
| 1499 |
+
{
|
| 1500 |
+
"epoch": 0.44,
|
| 1501 |
+
"learning_rate": 0.0001695457629904848,
|
| 1502 |
+
"loss": 1.6174,
|
| 1503 |
+
"step": 249
|
| 1504 |
+
},
|
| 1505 |
+
{
|
| 1506 |
+
"epoch": 0.44,
|
| 1507 |
+
"learning_rate": 0.00016882969439909433,
|
| 1508 |
+
"loss": 1.4768,
|
| 1509 |
+
"step": 250
|
| 1510 |
+
},
|
| 1511 |
+
{
|
| 1512 |
+
"epoch": 0.44,
|
| 1513 |
+
"learning_rate": 0.0001681119820715768,
|
| 1514 |
+
"loss": 1.9159,
|
| 1515 |
+
"step": 251
|
| 1516 |
+
},
|
| 1517 |
+
{
|
| 1518 |
+
"epoch": 0.45,
|
| 1519 |
+
"learning_rate": 0.00016739265292415185,
|
| 1520 |
+
"loss": 1.5289,
|
| 1521 |
+
"step": 252
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 0.45,
|
| 1525 |
+
"learning_rate": 0.00016667173393367446,
|
| 1526 |
+
"loss": 1.8026,
|
| 1527 |
+
"step": 253
|
| 1528 |
+
},
|
| 1529 |
+
{
|
| 1530 |
+
"epoch": 0.45,
|
| 1531 |
+
"learning_rate": 0.00016594925213662303,
|
| 1532 |
+
"loss": 1.6027,
|
| 1533 |
+
"step": 254
|
| 1534 |
+
},
|
| 1535 |
+
{
|
| 1536 |
+
"epoch": 0.45,
|
| 1537 |
+
"learning_rate": 0.00016522523462808572,
|
| 1538 |
+
"loss": 1.8634,
|
| 1539 |
+
"step": 255
|
| 1540 |
+
},
|
| 1541 |
+
{
|
| 1542 |
+
"epoch": 0.45,
|
| 1543 |
+
"learning_rate": 0.0001644997085607441,
|
| 1544 |
+
"loss": 1.7965,
|
| 1545 |
+
"step": 256
|
| 1546 |
+
},
|
| 1547 |
+
{
|
| 1548 |
+
"epoch": 0.45,
|
| 1549 |
+
"learning_rate": 0.00016377270114385485,
|
| 1550 |
+
"loss": 1.8084,
|
| 1551 |
+
"step": 257
|
| 1552 |
+
},
|
| 1553 |
+
{
|
| 1554 |
+
"epoch": 0.46,
|
| 1555 |
+
"learning_rate": 0.0001630442396422295,
|
| 1556 |
+
"loss": 1.5158,
|
| 1557 |
+
"step": 258
|
| 1558 |
+
},
|
| 1559 |
+
{
|
| 1560 |
+
"epoch": 0.46,
|
| 1561 |
+
"learning_rate": 0.00016231435137521182,
|
| 1562 |
+
"loss": 1.8523,
|
| 1563 |
+
"step": 259
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 0.46,
|
| 1567 |
+
"learning_rate": 0.00016158306371565322,
|
| 1568 |
+
"loss": 1.2613,
|
| 1569 |
+
"step": 260
|
| 1570 |
+
},
|
| 1571 |
+
{
|
| 1572 |
+
"epoch": 0.46,
|
| 1573 |
+
"learning_rate": 0.0001608504040888863,
|
| 1574 |
+
"loss": 1.6135,
|
| 1575 |
+
"step": 261
|
| 1576 |
+
},
|
| 1577 |
+
{
|
| 1578 |
+
"epoch": 0.46,
|
| 1579 |
+
"learning_rate": 0.0001601163999716962,
|
| 1580 |
+
"loss": 1.4411,
|
| 1581 |
+
"step": 262
|
| 1582 |
+
},
|
| 1583 |
+
{
|
| 1584 |
+
"epoch": 0.47,
|
| 1585 |
+
"learning_rate": 0.00015938107889129023,
|
| 1586 |
+
"loss": 1.7133,
|
| 1587 |
+
"step": 263
|
| 1588 |
+
},
|
| 1589 |
+
{
|
| 1590 |
+
"epoch": 0.47,
|
| 1591 |
+
"learning_rate": 0.00015864446842426554,
|
| 1592 |
+
"loss": 1.5927,
|
| 1593 |
+
"step": 264
|
| 1594 |
+
},
|
| 1595 |
+
{
|
| 1596 |
+
"epoch": 0.47,
|
| 1597 |
+
"learning_rate": 0.0001579065961955749,
|
| 1598 |
+
"loss": 1.5994,
|
| 1599 |
+
"step": 265
|
| 1600 |
+
},
|
| 1601 |
+
{
|
| 1602 |
+
"epoch": 0.47,
|
| 1603 |
+
"learning_rate": 0.00015716748987749065,
|
| 1604 |
+
"loss": 1.6315,
|
| 1605 |
+
"step": 266
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 0.47,
|
| 1609 |
+
"learning_rate": 0.0001564271771885668,
|
| 1610 |
+
"loss": 2.0437,
|
| 1611 |
+
"step": 267
|
| 1612 |
+
},
|
| 1613 |
+
{
|
| 1614 |
+
"epoch": 0.47,
|
| 1615 |
+
"learning_rate": 0.0001556856858925999,
|
| 1616 |
+
"loss": 1.9095,
|
| 1617 |
+
"step": 268
|
| 1618 |
+
},
|
| 1619 |
+
{
|
| 1620 |
+
"epoch": 0.48,
|
| 1621 |
+
"learning_rate": 0.00015494304379758735,
|
| 1622 |
+
"loss": 1.5502,
|
| 1623 |
+
"step": 269
|
| 1624 |
+
},
|
| 1625 |
+
{
|
| 1626 |
+
"epoch": 0.48,
|
| 1627 |
+
"learning_rate": 0.00015419927875468485,
|
| 1628 |
+
"loss": 1.4151,
|
| 1629 |
+
"step": 270
|
| 1630 |
+
},
|
| 1631 |
+
{
|
| 1632 |
+
"epoch": 0.48,
|
| 1633 |
+
"learning_rate": 0.0001534544186571617,
|
| 1634 |
+
"loss": 1.6274,
|
| 1635 |
+
"step": 271
|
| 1636 |
+
},
|
| 1637 |
+
{
|
| 1638 |
+
"epoch": 0.48,
|
| 1639 |
+
"learning_rate": 0.00015270849143935483,
|
| 1640 |
+
"loss": 1.6849,
|
| 1641 |
+
"step": 272
|
| 1642 |
+
},
|
| 1643 |
+
{
|
| 1644 |
+
"epoch": 0.48,
|
| 1645 |
+
"learning_rate": 0.00015196152507562127,
|
| 1646 |
+
"loss": 1.9244,
|
| 1647 |
+
"step": 273
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 0.48,
|
| 1651 |
+
"learning_rate": 0.0001512135475792888,
|
| 1652 |
+
"loss": 2.0862,
|
| 1653 |
+
"step": 274
|
| 1654 |
+
},
|
| 1655 |
+
{
|
| 1656 |
+
"epoch": 0.49,
|
| 1657 |
+
"learning_rate": 0.00015046458700160553,
|
| 1658 |
+
"loss": 1.7078,
|
| 1659 |
+
"step": 275
|
| 1660 |
+
},
|
| 1661 |
+
{
|
| 1662 |
+
"epoch": 0.49,
|
| 1663 |
+
"learning_rate": 0.00014971467143068791,
|
| 1664 |
+
"loss": 1.4565,
|
| 1665 |
+
"step": 276
|
| 1666 |
+
},
|
| 1667 |
+
{
|
| 1668 |
+
"epoch": 0.49,
|
| 1669 |
+
"learning_rate": 0.0001489638289904673,
|
| 1670 |
+
"loss": 1.8075,
|
| 1671 |
+
"step": 277
|
| 1672 |
+
},
|
| 1673 |
+
{
|
| 1674 |
+
"epoch": 0.49,
|
| 1675 |
+
"learning_rate": 0.00014821208783963522,
|
| 1676 |
+
"loss": 2.2061,
|
| 1677 |
+
"step": 278
|
| 1678 |
+
},
|
| 1679 |
+
{
|
| 1680 |
+
"epoch": 0.49,
|
| 1681 |
+
"learning_rate": 0.00014745947617058735,
|
| 1682 |
+
"loss": 1.6676,
|
| 1683 |
+
"step": 279
|
| 1684 |
+
},
|
| 1685 |
+
{
|
| 1686 |
+
"epoch": 0.5,
|
| 1687 |
+
"learning_rate": 0.00014670602220836633,
|
| 1688 |
+
"loss": 2.0041,
|
| 1689 |
+
"step": 280
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 0.5,
|
| 1693 |
+
"learning_rate": 0.00014595175420960293,
|
| 1694 |
+
"loss": 1.5538,
|
| 1695 |
+
"step": 281
|
| 1696 |
+
},
|
| 1697 |
+
{
|
| 1698 |
+
"epoch": 0.5,
|
| 1699 |
+
"learning_rate": 0.00014519670046145685,
|
| 1700 |
+
"loss": 1.5781,
|
| 1701 |
+
"step": 282
|
| 1702 |
+
},
|
| 1703 |
+
{
|
| 1704 |
+
"epoch": 0.5,
|
| 1705 |
+
"learning_rate": 0.0001444408892805554,
|
| 1706 |
+
"loss": 1.703,
|
| 1707 |
+
"step": 283
|
| 1708 |
+
},
|
| 1709 |
+
{
|
| 1710 |
+
"epoch": 0.5,
|
| 1711 |
+
"learning_rate": 0.0001436843490119318,
|
| 1712 |
+
"loss": 1.8105,
|
| 1713 |
+
"step": 284
|
| 1714 |
+
}
|
| 1715 |
+
],
|
| 1716 |
+
"logging_steps": 1,
|
| 1717 |
+
"max_steps": 565,
|
| 1718 |
+
"num_input_tokens_seen": 0,
|
| 1719 |
+
"num_train_epochs": 1,
|
| 1720 |
+
"save_steps": 142,
|
| 1721 |
+
"total_flos": 2.627459909913936e+18,
|
| 1722 |
+
"train_batch_size": 1,
|
| 1723 |
+
"trial_name": null,
|
| 1724 |
+
"trial_params": null
|
| 1725 |
+
}
|
checkpoint-284/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:88c1454fe3e0c5f38812eb2f4667c494fbefda796a453029074b9ce12e2fe147
|
| 3 |
+
size 6011
|
checkpoint-284/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 252 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 253 |
+
|
| 254 |
+
# Reconstruction protocol:
|
| 255 |
+
#
|
| 256 |
+
# XXX: document this
|
| 257 |
+
|
| 258 |
+
if debug:
|
| 259 |
+
for i in range(world_size):
|
| 260 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 262 |
+
|
| 263 |
+
# XXX: memory usage doubles here (zero2)
|
| 264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 265 |
+
merged_single_partition_of_fp32_groups = []
|
| 266 |
+
for i in range(num_param_groups):
|
| 267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 270 |
+
avail_numel = sum(
|
| 271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 272 |
+
|
| 273 |
+
if debug:
|
| 274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 276 |
+
# not asserting if there is a mismatch due to possible padding
|
| 277 |
+
print(f"Have {avail_numel} numels to process.")
|
| 278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 279 |
+
|
| 280 |
+
# params
|
| 281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 282 |
+
# out-of-core computing solution
|
| 283 |
+
total_numel = 0
|
| 284 |
+
total_params = 0
|
| 285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 286 |
+
offset = 0
|
| 287 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 288 |
+
for name, shape in shapes.items():
|
| 289 |
+
|
| 290 |
+
unpartitioned_numel = shape.numel()
|
| 291 |
+
total_numel += unpartitioned_numel
|
| 292 |
+
total_params += 1
|
| 293 |
+
|
| 294 |
+
if debug:
|
| 295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 297 |
+
offset += unpartitioned_numel
|
| 298 |
+
|
| 299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 303 |
+
align_to = 2 * world_size
|
| 304 |
+
|
| 305 |
+
def zero2_align(x):
|
| 306 |
+
return align_to * math.ceil(x / align_to)
|
| 307 |
+
|
| 308 |
+
if debug:
|
| 309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 310 |
+
|
| 311 |
+
offset = zero2_align(offset)
|
| 312 |
+
avail_numel = zero2_align(avail_numel)
|
| 313 |
+
|
| 314 |
+
if debug:
|
| 315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 316 |
+
|
| 317 |
+
# Sanity check
|
| 318 |
+
if offset != avail_numel:
|
| 319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 320 |
+
|
| 321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 322 |
+
|
| 323 |
+
|
| 324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 325 |
+
state_dict = OrderedDict()
|
| 326 |
+
|
| 327 |
+
# buffers
|
| 328 |
+
buffers = zero_model_states[0].buffers
|
| 329 |
+
state_dict.update(buffers)
|
| 330 |
+
if debug:
|
| 331 |
+
print(f"added {len(buffers)} buffers")
|
| 332 |
+
|
| 333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 334 |
+
|
| 335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 336 |
+
|
| 337 |
+
# recover shared parameters
|
| 338 |
+
for pair in zero_model_states[0].shared_params:
|
| 339 |
+
if pair[1] in state_dict:
|
| 340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 341 |
+
|
| 342 |
+
return state_dict
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 346 |
+
remainder = unpartitioned_numel % world_size
|
| 347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 349 |
+
return partitioned_numel, padding_numel
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 354 |
+
return
|
| 355 |
+
|
| 356 |
+
if debug:
|
| 357 |
+
for i in range(world_size):
|
| 358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 360 |
+
|
| 361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 362 |
+
wanted_params = len(frozen_param_shapes)
|
| 363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 367 |
+
|
| 368 |
+
total_params = 0
|
| 369 |
+
total_numel = 0
|
| 370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 371 |
+
total_params += 1
|
| 372 |
+
unpartitioned_numel = shape.numel()
|
| 373 |
+
total_numel += unpartitioned_numel
|
| 374 |
+
|
| 375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 377 |
+
|
| 378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 379 |
+
|
| 380 |
+
if debug:
|
| 381 |
+
print(
|
| 382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 383 |
+
)
|
| 384 |
+
|
| 385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 389 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 393 |
+
|
| 394 |
+
# merge list of dicts, preserving order
|
| 395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 396 |
+
|
| 397 |
+
if debug:
|
| 398 |
+
for i in range(world_size):
|
| 399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 400 |
+
|
| 401 |
+
wanted_params = len(param_shapes)
|
| 402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 403 |
+
# not asserting if there is a mismatch due to possible padding
|
| 404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 407 |
+
|
| 408 |
+
# params
|
| 409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 410 |
+
# out-of-core computing solution
|
| 411 |
+
offset = 0
|
| 412 |
+
total_numel = 0
|
| 413 |
+
total_params = 0
|
| 414 |
+
for name, shape in param_shapes.items():
|
| 415 |
+
|
| 416 |
+
unpartitioned_numel = shape.numel()
|
| 417 |
+
total_numel += unpartitioned_numel
|
| 418 |
+
total_params += 1
|
| 419 |
+
|
| 420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 421 |
+
|
| 422 |
+
if debug:
|
| 423 |
+
print(
|
| 424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 425 |
+
)
|
| 426 |
+
|
| 427 |
+
# XXX: memory usage doubles here
|
| 428 |
+
state_dict[name] = torch.cat(
|
| 429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 431 |
+
offset += partitioned_numel
|
| 432 |
+
|
| 433 |
+
offset *= world_size
|
| 434 |
+
|
| 435 |
+
# Sanity check
|
| 436 |
+
if offset != avail_numel:
|
| 437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 438 |
+
|
| 439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 440 |
+
|
| 441 |
+
|
| 442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 443 |
+
state_dict = OrderedDict()
|
| 444 |
+
|
| 445 |
+
# buffers
|
| 446 |
+
buffers = zero_model_states[0].buffers
|
| 447 |
+
state_dict.update(buffers)
|
| 448 |
+
if debug:
|
| 449 |
+
print(f"added {len(buffers)} buffers")
|
| 450 |
+
|
| 451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 452 |
+
|
| 453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 454 |
+
|
| 455 |
+
# recover shared parameters
|
| 456 |
+
for pair in zero_model_states[0].shared_params:
|
| 457 |
+
if pair[1] in state_dict:
|
| 458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 459 |
+
|
| 460 |
+
return state_dict
|
| 461 |
+
|
| 462 |
+
|
| 463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 464 |
+
"""
|
| 465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 467 |
+
via a model hub.
|
| 468 |
+
|
| 469 |
+
Args:
|
| 470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 472 |
+
|
| 473 |
+
Returns:
|
| 474 |
+
- pytorch ``state_dict``
|
| 475 |
+
|
| 476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 478 |
+
the checkpoint.
|
| 479 |
+
|
| 480 |
+
A typical usage might be ::
|
| 481 |
+
|
| 482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 483 |
+
# do the training and checkpoint saving
|
| 484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 485 |
+
model = model.cpu() # move to cpu
|
| 486 |
+
model.load_state_dict(state_dict)
|
| 487 |
+
# submit to model hub or save the model to share with others
|
| 488 |
+
|
| 489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 492 |
+
|
| 493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 494 |
+
|
| 495 |
+
"""
|
| 496 |
+
if tag is None:
|
| 497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 498 |
+
if os.path.isfile(latest_path):
|
| 499 |
+
with open(latest_path, 'r') as fd:
|
| 500 |
+
tag = fd.read().strip()
|
| 501 |
+
else:
|
| 502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 503 |
+
|
| 504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 505 |
+
|
| 506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 508 |
+
|
| 509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 510 |
+
|
| 511 |
+
|
| 512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 513 |
+
"""
|
| 514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 516 |
+
|
| 517 |
+
Args:
|
| 518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 521 |
+
"""
|
| 522 |
+
|
| 523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 525 |
+
torch.save(state_dict, output_file)
|
| 526 |
+
|
| 527 |
+
|
| 528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 529 |
+
"""
|
| 530 |
+
1. Put the provided model to cpu
|
| 531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 532 |
+
3. Load it into the provided model
|
| 533 |
+
|
| 534 |
+
Args:
|
| 535 |
+
- ``model``: the model object to update
|
| 536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 538 |
+
|
| 539 |
+
Returns:
|
| 540 |
+
- ``model`: modified model
|
| 541 |
+
|
| 542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 544 |
+
conveniently placed for you in the checkpoint folder.
|
| 545 |
+
|
| 546 |
+
A typical usage might be ::
|
| 547 |
+
|
| 548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 550 |
+
# submit to model hub or save the model to share with others
|
| 551 |
+
|
| 552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 555 |
+
|
| 556 |
+
"""
|
| 557 |
+
logger.info(f"Extracting fp32 weights")
|
| 558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 559 |
+
|
| 560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 561 |
+
model = model.cpu()
|
| 562 |
+
model.load_state_dict(state_dict, strict=False)
|
| 563 |
+
|
| 564 |
+
return model
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
if __name__ == "__main__":
|
| 568 |
+
|
| 569 |
+
parser = argparse.ArgumentParser()
|
| 570 |
+
parser.add_argument("checkpoint_dir",
|
| 571 |
+
type=str,
|
| 572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 573 |
+
parser.add_argument(
|
| 574 |
+
"output_file",
|
| 575 |
+
type=str,
|
| 576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 577 |
+
parser.add_argument("-t",
|
| 578 |
+
"--tag",
|
| 579 |
+
type=str,
|
| 580 |
+
default=None,
|
| 581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 583 |
+
args = parser.parse_args()
|
| 584 |
+
|
| 585 |
+
debug = args.debug
|
| 586 |
+
|
| 587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|