File size: 6,946 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import collections
import json
import os
import hydra
import lightning as L
import omegaconf
import pandas as pd
import rdkit
import rich.syntax
import rich.tree
import spacy
import torch
import transformers
# from evaluate import load
from nltk.util import ngrams
from tqdm.auto import tqdm
import dataloader
import diffusion
import eval_utils
rdkit.rdBase.DisableLog('rdApp.error')
omegaconf.OmegaConf.register_new_resolver(
'cwd', os.getcwd)
omegaconf.OmegaConf.register_new_resolver(
'device_count', torch.cuda.device_count)
omegaconf.OmegaConf.register_new_resolver(
'eval', eval)
omegaconf.OmegaConf.register_new_resolver(
'div_up', lambda x, y: (x + y - 1) // y)
omegaconf.OmegaConf.register_new_resolver(
'if_then_else',
lambda condition, x, y: x if condition else y
)
def _print_config(
config: omegaconf.DictConfig,
resolve: bool = True) -> None:
"""Prints content of DictConfig using Rich library and its tree structure.
Args:
config (DictConfig): Configuration composed by Hydra.
resolve (bool): Whether to resolve reference fields of DictConfig.
"""
style = 'dim'
tree = rich.tree.Tree('CONFIG', style=style,
guide_style=style)
fields = config.keys()
for field in fields:
branch = tree.add(field, style=style, guide_style=style)
config_section = config.get(field)
branch_content = str(config_section)
if isinstance(config_section, omegaconf.DictConfig):
branch_content = omegaconf.OmegaConf.to_yaml(
config_section, resolve=resolve)
branch.add(rich.syntax.Syntax(branch_content, 'yaml'))
rich.print(tree)
def compute_diversity(sentences):
# compute diversity
ngram_range = [2, 3, 4]
tokenizer = spacy.load("en_core_web_sm").tokenizer
token_list = []
for sentence in sentences:
token_list.append(
[str(token) for token in tokenizer(sentence)])
ngram_sets = {}
ngram_counts = collections.defaultdict(int)
n_gram_repetition = {}
for n in ngram_range:
ngram_sets[n] = set()
for tokens in token_list:
ngram_sets[n].update(ngrams(tokens, n))
ngram_counts[n] += len(list(ngrams(tokens, n)))
n_gram_repetition[f"{n}gram_repetition"] = (
1 - len(ngram_sets[n]) / ngram_counts[n])
diversity = 1
for val in n_gram_repetition.values():
diversity *= (1 - val)
return diversity
def compute_sentiment_classifier_score(sentences, eval_model_name_or_path):
tokenizer = transformers.AutoTokenizer.from_pretrained(eval_model_name_or_path)
eval_model = transformers.AutoModelForSequenceClassification.from_pretrained(
eval_model_name_or_path).to('cuda')
eval_model.eval()
total_pos = 0
total_neg = 0
pbar = tqdm(sentences, desc='Classifier eval')
for sen in pbar:
# Tokenize the input text
inputs = tokenizer(
sen,
return_tensors="pt",
truncation=True,
padding=True).to('cuda')
# Get the model predictions
with torch.no_grad():
outputs = eval_model(**inputs)
# Convert logits to probabilities
probs = torch.nn.functional.softmax(
outputs.logits, dim=-1)
# Get the predicted class
predicted_class = torch.argmax(probs, dim=1).item()
if predicted_class == 1:
total_pos += 1
else:
total_neg += 1
pbar.set_postfix(accuracy=total_pos / (total_pos + total_neg))
return total_pos / (total_pos + total_neg)
# def compute_mauve(config, tokenizer, sentences):
# os.environ["TOKENIZERS_PARALLELISM"] = "false"
# # compute mauve
# torch.cuda.empty_cache()
# mauve = load("mauve")
# human_references = []
#
# valid_loader = dataloader.get_dataloaders(
# config, tokenizer, valid_seed=config.seed)
#
# # construct reference
# for batch_id in range(config.sampling.num_sample_batches):
# batch = next(iter(valid_loader))
# input_ids = batch['input_ids']
# for i in range(config.sampling.batch_size):
# idx = (
# input_ids[i] == tokenizer.eos_token_id).nonzero(
# as_tuple=True)
# if idx[0].numel() > 0:
# idx = idx[0][0].item()
# input_ids[i, (idx + 1):] = 0
# human_references.extend(
# tokenizer.batch_decode(
# input_ids, skip_special_tokens=True))
#
# assert len(sentences) == len(human_references)
#
# results = mauve.compute(predictions=sentences,
# references=human_references,
# featurize_model_name=config.data.mauve_model,
# max_text_length=256, device_id=0)
# return results.mauve
@hydra.main(version_base=None, config_path='../configs',
config_name='config')
def main(config: omegaconf.DictConfig) -> None:
# Reproducibility
L.seed_everything(config.seed)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.benchmark = False
_print_config(config, resolve=True)
print(f"Checkpoint: {config.eval.checkpoint_path}")
tokenizer = dataloader.get_tokenizer(config)
pretrained = diffusion.Diffusion.load_from_checkpoint(
config.eval.checkpoint_path,
tokenizer=tokenizer,
config=config, logger=False)
pretrained.eval()
result_dicts = []
samples = []
for _ in tqdm(
range(config.sampling.num_sample_batches),
desc='Gen. batches', leave=False):
sample = pretrained.sample()
samples.extend(
pretrained.tokenizer.batch_decode(sample))
samples = [
s.replace('[CLS]', '').replace('[SEP]', '').replace('[PAD]', '').replace('[MASK]', '').strip()
for s in samples
]
del pretrained # free up space for eval
diversity_score = compute_diversity(samples)
classifier_accuracy = compute_sentiment_classifier_score(
samples, eval_model_name_or_path=config.eval.classifier_model_name_or_path)
generative_ppl = eval_utils.compute_generative_ppl(
samples,
eval_model_name_or_path=config.eval.generative_ppl_model_name_or_path,
gen_ppl_eval_batch_size=8,
max_length=config.model.length)
result_dicts.append({
'Seed': config.seed,
'T': config.sampling.steps,
'Num Samples': config.sampling.batch_size * config.sampling.num_sample_batches,
'Diversity': diversity_score,
'Accuracy': classifier_accuracy,
'Gen. PPL': generative_ppl,
} | {k.capitalize(): v for k, v in config.guidance.items()})
print("Guidance:", ", ".join([f"{k.capitalize()} - {v}" for k, v in config.guidance.items()]))
print(f"\tDiversity: {diversity_score:0.3f} ",
f"Accuracy: {classifier_accuracy:0.3f} ",
f"Gen. PPL: {generative_ppl:0.3f}")
print(f"Generated {len(samples)} sentences.")
with open(config.eval.generated_samples_path, 'w') as f:
json.dump(
{
'generated_seqs': samples,
},
f, indent=4) # type: ignore
results_df = pd.DataFrame.from_records(result_dicts)
results_df.to_csv(config.eval.results_csv_path)
if __name__ == '__main__':
main()
|