File size: 8,061 Bytes
65bd8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import json
import os
import time
import typing
import datasets
import hydra
import lightning as L
import numpy as np
import omegaconf
import pandas as pd
import rdkit
import rich.syntax
import rich.tree
import torch
from rdkit import Chem as rdChem
from rdkit.Chem import QED
from tqdm.auto import tqdm
import dataloader
import diffusion
rdkit.rdBase.DisableLog('rdApp.error')
omegaconf.OmegaConf.register_new_resolver(
'cwd', os.getcwd)
omegaconf.OmegaConf.register_new_resolver(
'device_count', torch.cuda.device_count)
omegaconf.OmegaConf.register_new_resolver(
'eval', eval)
omegaconf.OmegaConf.register_new_resolver(
'div_up', lambda x, y: (x + y - 1) // y)
omegaconf.OmegaConf.register_new_resolver(
'if_then_else',
lambda condition, x, y: x if condition else y
)
def _print_config(
config: omegaconf.DictConfig,
resolve: bool = True) -> None:
"""Prints content of DictConfig using Rich library and its tree structure.
Args:
config (DictConfig): Configuration composed by Hydra.
resolve (bool): Whether to resolve reference fields of DictConfig.
"""
style = 'dim'
tree = rich.tree.Tree('CONFIG', style=style,
guide_style=style)
fields = config.keys()
for field in fields:
branch = tree.add(field, style=style, guide_style=style)
config_section = config.get(field)
branch_content = str(config_section)
if isinstance(config_section, omegaconf.DictConfig):
branch_content = omegaconf.OmegaConf.to_yaml(
config_section, resolve=resolve)
branch.add(rich.syntax.Syntax(branch_content, 'yaml'))
rich.print(tree)
def get_mol_property_fn(
prop: str
) -> typing.Callable[[rdChem.Mol], typing.Union[int, float]]:
if prop == 'qed':
return QED.qed
if prop == 'ring_count':
return lambda x_mol: len(rdChem.GetSymmSSSR(x_mol))
raise NotImplementedError(
f"Property function for {prop} not implemented")
@hydra.main(version_base=None, config_path='../configs',
config_name='config')
def main(config: omegaconf.DictConfig) -> None:
# Reproducibility
L.seed_everything(config.seed)
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.benchmark = False
_print_config(config, resolve=True)
print(f"Checkpoint: {config.eval.checkpoint_path}")
qm9_dataset = datasets.load_dataset(
'yairschiff/qm9', trust_remote_code=True,
split='train')
tokenizer = dataloader.get_tokenizer(config)
pretrained = diffusion.Diffusion.load_from_checkpoint(
config.eval.checkpoint_path,
tokenizer=tokenizer,
config=config, logger=False)
pretrained.eval()
label_col = config.data.label_col
pctile_threshold = config.data.label_col_pctile
pctile_threshold_value = np.percentile(
qm9_dataset[label_col], q=pctile_threshold)
above_threshold = np.array(qm9_dataset[label_col])[
qm9_dataset[label_col] >= pctile_threshold_value]
below_threshold = np.array(qm9_dataset[label_col])[
qm9_dataset[label_col] < pctile_threshold_value]
result_dicts = []
mol_property_fn = get_mol_property_fn(label_col)
print(
f"All - {label_col.upper()} Mean: {np.mean(qm9_dataset[label_col]):0.3f}, {label_col.upper()} Median: {np.median(qm9_dataset[label_col]):0.3f}")
print(
f"Below {pctile_threshold}%ile - {label_col.upper()} Mean: {np.mean(below_threshold):0.3f}, {label_col.upper()} Median: {np.median(below_threshold):0.3f}")
print(
f"Above {pctile_threshold}%ile - {label_col.upper()} Mean: {np.mean(above_threshold):0.3f}, {label_col.upper()} Median: {np.median(above_threshold):0.3f}")
result_dicts.append({
'Seed': -1,
'T': -1,
'Num Samples': len(qm9_dataset),
'Valid': 1.0,
'Unique': 1.0,
'Novel': 1.0,
f'{label_col.upper()} Mean': np.mean(qm9_dataset[label_col]),
f'{label_col.upper()} 25%ile': np.percentile(qm9_dataset[label_col], q=25),
f'{label_col.upper()} Median': np.median(qm9_dataset[label_col]),
f'{label_col.upper()} 75%ile': np.percentile(qm9_dataset[label_col], q=75),
f'Novel {label_col.upper()} Mean': np.mean(qm9_dataset[label_col]),
f'Novel {label_col.upper()} 25%ile': np.percentile(qm9_dataset[label_col], q=25),
f'Novel {label_col.upper()} Median': np.median(qm9_dataset[label_col]),
f'Novel {label_col.upper()} 75%ile': np.percentile(qm9_dataset[label_col], q=75),
} | {k.capitalize(): -1 for k, v in config.guidance.items()})
samples = []
for _ in tqdm(
range(config.sampling.num_sample_batches),
desc='Gen. batches', leave=False):
start = time.time()
sample = pretrained.sample()
# print(f"Batch took {time.time() - start:.2f} seconds.")
samples.extend(
pretrained.tokenizer.batch_decode(sample))
invalids = []
valids = []
mol_property = []
for t in samples:
t = t.replace('<bos>', '').replace('<eos>', '').replace('<pad>', '')
try:
mol = rdChem.MolFromSmiles(t)
if mol is None or len(t) == 0:
invalids.append(t)
else:
valids.append(t)
mol_property.append(mol_property_fn(mol))
except rdkit.Chem.rdchem.KekulizeException as e:
print(e)
invalids.append(t)
valid = len(valids)
valid_pct = len(valids) / len(samples)
unique = len(set(valids))
novel = len(set(valids) - set(qm9_dataset['canonical_smiles']))
try:
unique_pct = unique / valid
novel_pct = novel / valid
except ZeroDivisionError:
unique_pct, novel_pct = 0., 0.
mol_property_novel = [
mol_property_fn(rdChem.MolFromSmiles(s))
for s in set(valids) - set(qm9_dataset['canonical_smiles'])
]
result_dicts.append({
'Seed': config.seed,
'T': config.sampling.steps,
'Num Samples': config.sampling.batch_size * config.sampling.num_sample_batches,
'Valid': valid_pct,
'Unique': unique_pct,
'Novel': novel_pct,
f'{label_col.upper()} Mean': np.mean(mol_property) if len(mol_property) > 0 else 0.,
f'{label_col.upper()} 25%ile': np.percentile(mol_property, q=25) if len(mol_property) > 0 else 0.,
f'{label_col.upper()} Median': np.median(mol_property) if len(mol_property) > 0 else 0.,
f'{label_col.upper()} 75%ile': np.percentile(mol_property, q=75) if len(mol_property) > 0 else 0.,
f'Novel {label_col.upper()} Mean': np.mean(mol_property_novel) if len(mol_property_novel) > 0 else 0.,
f'Novel {label_col.upper()} 25%ile': np.percentile(mol_property_novel, q=25) if len(mol_property_novel) > 0 else 0.,
f'Novel {label_col.upper()} Median': np.median(mol_property_novel) if len(mol_property_novel) > 0 else 0.,
f'Novel {label_col.upper()} 75%ile': np.percentile(mol_property_novel, q=75) if len(mol_property_novel) > 0 else 0.,
} | {k.capitalize(): v for k, v in config.guidance.items()})
print("Guidance:", ", ".join([f"{k.capitalize()} - {v}" for k, v in config.guidance.items()]))
print(f"\tValid: {valid:,d} / {len(samples):,d} ({100 * valid_pct:0.2f}%) ",
f"Unique (of valid): {unique:,d} / {valid:,d} ({100 * unique_pct:0.2f}%) ",
f"Novel (of valid): {novel:,d} / {valid:,d} ({100 * novel_pct:0.2f}%)\n",
f"\t{label_col.upper()} Mean: {np.mean(mol_property) if len(mol_property) else 0.:0.3f}, {label_col.upper()} Median: {np.median(mol_property) if len(mol_property) else 0.:0.3f}\n",
f"\tNovel {label_col.upper()} Mean: {np.mean(mol_property_novel) if len(mol_property_novel) else 0.:0.3f}, Novel {label_col.upper()} Median: {np.median(mol_property_novel) if len(mol_property_novel) else 0.:0.3f}"
)
print(f"Generated {len(samples)} sentences.")
with open(config.eval.generated_samples_path, 'w') as f:
json.dump(
{
'valid': valids,
'novel': list(set(valids) - set(qm9_dataset['canonical_smiles'])),
f"{label_col}_valid": mol_property,
f"{label_col}_novel": mol_property_novel,
},
f, indent=4) # type: ignore
results_df = pd.DataFrame.from_records(result_dicts)
results_df.to_csv(config.eval.results_csv_path)
if __name__ == '__main__':
main()
|