File size: 18,355 Bytes
65bd8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
import itertools
import json
import os
import typing

import datasets
import hydra
import lightning as L
import numpy as np
import omegaconf
import pandas as pd
import rdkit
import rich.syntax
import rich.tree
import scipy
import torch
import transformers
from sklearn.metrics import (
  f1_score,
  matthews_corrcoef,
  precision_score,
  recall_score,
  roc_auc_score
)
from tqdm.auto import tqdm

import classifier
import custom_datasets
import dataloader
import diffusion

rdkit.rdBase.DisableLog('rdApp.error')

omegaconf.OmegaConf.register_new_resolver(
  'cwd', os.getcwd)
omegaconf.OmegaConf.register_new_resolver(
  'device_count', torch.cuda.device_count)
omegaconf.OmegaConf.register_new_resolver(
  'eval', eval)
omegaconf.OmegaConf.register_new_resolver(
  'div_up', lambda x, y: (x + y - 1) // y)
omegaconf.OmegaConf.register_new_resolver(
  'if_then_else',
  lambda condition, x, y: x if condition else y
)


def _print_config(
    config: omegaconf.DictConfig,
    resolve: bool = True) -> None:
  """Prints content of DictConfig using Rich library and its tree structure.

  Args:
    config (DictConfig): Configuration composed by Hydra.
    resolve (bool): Whether to resolve reference fields of DictConfig.
  """

  style = 'dim'
  tree = rich.tree.Tree('CONFIG', style=style,
                        guide_style=style)

  fields = config.keys()
  for field in fields:
    branch = tree.add(field, style=style, guide_style=style)

    config_section = config.get(field)
    branch_content = str(config_section)
    if isinstance(config_section, omegaconf.DictConfig):
      branch_content = omegaconf.OmegaConf.to_yaml(
        config_section, resolve=resolve)

    branch.add(rich.syntax.Syntax(branch_content, 'yaml'))
  rich.print(tree)


def generate_ordered_kmers(
    kmer_length: int
) -> typing.List[str]:
  """
  Function that generates all kmers of a given length and orders them by their index
  defined by the kmer_to_index function.

  Args:
      kmer_length (int): The length of the kmers to generate

  Returns:
      List[str]: A list of all kmers of the given length ordered by their index
  """
  characters = ["A", "C", "G", "T"]

  kmers = ["".join(kmer) for kmer in
           itertools.product(characters,
                             repeat=kmer_length)]
  ordered_kmers = sorted(kmers, key=kmer_to_index)

  return ordered_kmers


def kmer_to_index(kmer: str) -> int:
  """
  Function that converts a given kmer to a unique value
  system.

  Args:
      kmer (str): The given kmer

  Returns:
      int: The associated unique value

  Example:
      >>> kmer_to_index("AAC")
      1

  """
  mapping = {"A": 0, "C": 1, "G": 2, "T": 3}
  index = 0
  for char in kmer:
    index = index * 4 + mapping[char]
  return index


def compute_kmer_frequencies(
    seqs: typing.List[str], kmer_length: int
) -> typing.Tuple[typing.List[float], typing.List[str]]:
  """
  Computes the kmer frequencies in a list of sequences.
  Each element of the output array is the frequency of a given kmer over the whole
  set of sequences.

  Args:
      seqs (List[str]): List of nucleotide sequences
      kmer_length (int): Length of the kmers

  Returns:
      List[float]: Kmer frequencies
      List[str]: The kmers

  Example:
      >>> sequences = ["AGCT", "AAAA"]
      >>> compute_kmer_frequencies(seqs, kmer_length=1)
      ([0.625, 0.125, 0.125, 0.125], ['A', 'C', 'G', 'T'])
  """

  kmer_counts: typing.Dict[str, int] = {}
  count_kmers_occurrences = 0
  for seq in seqs:
    for i in range(len(seq) - kmer_length + 1):
      kmer = seq[i: i + kmer_length]
      if kmer in kmer_counts:
        kmer_counts[kmer] += 1
      else:
        kmer_counts[kmer] = 1
      count_kmers_occurrences += 1

  kmer_list = generate_ordered_kmers(kmer_length)
  kmer_frequencies = []
  for kmer in kmer_list:
    try:
      kmer_frequencies.append(
        kmer_counts[kmer] / count_kmers_occurrences)
    except KeyError:
      kmer_frequencies.append(0)

  return kmer_frequencies, kmer_list


def run_eval_pipeline(
  seqs: typing.Dict[int, typing.List[str]],
  num_samples_per_class: int,
  train_weights_path: str,
  val_weights_path: str,
  eval_classifier_checkpoint_path: str,
  kmer_freqs_path: str
):
  # Eval pipeline
  L.seed_everything(42)

  # Load classifier
  with hydra.initialize(version_base=None,
                        config_path='../configs/'):
    classifier_config = hydra.compose(
      config_name='config',
      overrides=[
        'hydra.output_subdir=null',
        'hydra.job.chdir=False',
        'hydra/job_logging=disabled',
        'hydra/hydra_logging=disabled',
        '+is_eval_classifier=True',
        'mode=train_classifier',
        'loader.global_batch_size=32',
        'loader.eval_global_batch_size=64',
        'loader.batch_size=2',
        'loader.eval_batch_size=4',
        'data=ten_species',
        'classifier_model=hyenadna-classifier',
        'classifier_model.hyena_model_name_or_path=LongSafari/hyenadna-small-32k-seqlen-hf',
        'classifier_backbone=hyenadna',
        'classifier_model.n_layer=8',
        'model.length=32768',
        'diffusion=null',
        'T=null',
        f"eval.checkpoint_path={eval_classifier_checkpoint_path}"
      ]
    )
  classifier_config = omegaconf.OmegaConf.create(
    classifier_config)
  tokenizer = transformers.AutoTokenizer.from_pretrained(
    classifier_config.data.tokenizer_name_or_path,
    trust_remote_code=True)
  pretrained_classifier = classifier.Classifier.load_from_checkpoint(
    classifier_config.eval.checkpoint_path,
    tokenizer=tokenizer,
    config=classifier_config, logger=False)
  pretrained_classifier.eval()

  tokenizer = dataloader.get_tokenizer(classifier_config)
  _, val_dl = dataloader.get_dataloaders(
    classifier_config, tokenizer, skip_train=True,
    valid_seed=classifier_config.seed)

  dataset = datasets.load_dataset(
    'yairschiff/ten_species',
    split='train',
    # original dataset only has `train` split
    chunk_length=classifier_config.model.length,
    overlap=0,
    trust_remote_code=True)
  dataset = dataset.train_test_split(
    test_size=0.05, seed=42)
  train_dataset = dataset['train']
  val_dataset = dataset['test']


  print(f"Len of train set {len(train_dataset) * (2 ** 15):,d}")
  print(f"Len of val set {len(val_dataset) * (2 ** 15):,d}")

  int_to_species = ['Homo_sapiens', 'Mus_musculus',
                    'Drosophila_melanogaster',
                    'Danio_rerio',
                    'Caenorhabditis_elegans',
                    'Gallus_gallus', 'Gorilla_gorilla',
                    'Felis_catus',
                    'Salmo_trutta', 'Arabidopsis_thaliana']

  if os.path.exists(train_weights_path):
    train_weights = torch.load(train_weights_path)
  else:
    train_weights = {k: 0 for k in range(10)}
    for i in tqdm(train_dataset, leave=False):
      train_weights[i['species_label']] += 1
    train_weights = {
      k: v / np.sum(list(train_weights.values())) for k, v
      in train_weights.items()}
    torch.save(train_weights, train_weights_path)
  print('Train weights:')
  for k, v in train_weights.items():
    print("\t", int_to_species[k], f"{100 * v:0.2f}")

  if os.path.exists(val_weights_path):
    val_weights = torch.load(val_weights_path)
  else:
    val_weights = {k: 0 for k in range(10)}
    for i in tqdm(val_dataset, leave=False):
      val_weights[i['species_label']] += 1
    val_weights = {k: v / np.sum(list(val_weights.values()))
                   for k, v in val_weights.items()}
    torch.save(val_weights, val_weights_path)
  print('\nVal weights:')
  for k, v in val_weights.items():
    print("\t", int_to_species[k], f"{100 * v:0.2f}")


  result_dict = {}
  test_data = []

  for k, v in seqs.items():
    test_data.extend(
      [
        {
          'sequence': s.replace('[CLS]', '').replace(
            '[BOS]', '').replace('[MASK]', '').replace(
            '[SEP]', '').replace('[PAD]', '').replace(
            '[UNK]', ''),
          'species_label': k
        }
        for s in v
      ]
    )
  test_dataset = custom_datasets.ten_species_dataset.TenSpeciesDataset(
    split='test',
    tokenizer=tokenizer,
    max_length=classifier_config.model.length,
    rc_aug=False,
    add_special_tokens=classifier_config.data.add_special_tokens,
    dataset=test_data
  )

  ## CLASSIFIER ACCURACY
  test_preds = [
    pretrained_classifier.forward(
      test_dataset[i]['input_ids'][None, ...].to(
        'cuda')).argmax(dim=-1).detach().item()
    for i in
    tqdm(range(len(test_dataset)), desc='Testing')
  ]
  test_preds = np.array(test_preds)

  test_labels = []
  for k, v in seqs.items():
    test_labels.extend([int(k)] * len(v))
  test_labels = np.array(test_labels)

  overall_accuracy_score = (test_preds == test_labels).sum() / test_preds.size
  overall_f1_score = f1_score(y_pred=test_preds,
                              y_true=test_labels,
                              average="macro",
                              labels=list(range(classifier_config.data.num_classes)))
  overall_mcc_score = matthews_corrcoef(y_pred=test_preds, y_true=test_labels)

  print(f"Overall Acc: {overall_accuracy_score:0.2f}")
  print(f"Overall F1:  {overall_f1_score:0.2f}")
  print(f"Overall MCC: {overall_mcc_score:0.2f}")
  result_dict['F1'] = overall_f1_score

  f1_scores = f1_score(
    y_pred=test_preds,
    y_true=test_labels,
    average=None,
    labels=list(range(classifier_config.data.num_classes)))
  precision_scores = precision_score(
    y_pred=test_preds,
    y_true=test_labels,
    average=None,
    labels=list(range(classifier_config.data.num_classes)))
  recall_scores = recall_score(
    y_pred=test_preds,
    y_true=test_labels,
    average=None,
    labels=list(range(classifier_config.data.num_classes)))

  species_list = ['Homo_sapiens', 'Mus_musculus',
                  'Drosophila_melanogaster',
                  'Danio_rerio',
                  'Caenorhabditis_elegans',
                  'Gallus_gallus', 'Gorilla_gorilla',
                  'Felis_catus',
                  'Salmo_trutta',
                  'Arabidopsis_thaliana']
  for s in range(classifier_config.data.num_classes):
    print(f"Class {s} - {species_list[s]}:")
    print(f"   F1:        {f1_scores[s]:0.3f}")
    print(f"   Precision: {precision_scores[s]:0.3f}")
    print(f"   Recall:    {recall_scores[s]:0.3f}")

  ## KMER SPECTRUM
  kmer_lengths = [3, 6]
  kmer_results = {k: [] for k in kmer_lengths}
  if os.path.exists(kmer_freqs_path):
    kmer_freqs = torch.load(kmer_freqs_path)
  else:
    kmer_freqs = {s: {
      kmer_length: {'frequencies': None,
                    'kmers': None} for kmer_length in
      kmer_lengths} for s in range(10)}
    for s in range(10):
      filter_ds = val_dataset.filter(
        lambda x: x['species_label'] == s,
        num_proc=len(os.sched_getaffinity(0)))
      print(f"Computing kmer frequencies for species class {s}")
      for kmer_length in kmer_lengths:
        kmer_frequencies_gt, kmer_list = compute_kmer_frequencies(
          seqs=filter_ds['sequence'],
          kmer_length=kmer_length
        )
        kmer_freqs[s][kmer_length]['frequencies'] = kmer_frequencies_gt
        kmer_freqs[s][kmer_length]['kmers'] = kmer_list
    torch.save(kmer_freqs, kmer_freqs_path)
  for s in range(10):
    print(f"Species class {s}")
    mean_js_divergence = 0
    for kmer_length in kmer_lengths:
      kmer_frequencies_gt = kmer_freqs[s][kmer_length]['frequencies']
      kmer_frequencies_generated, kmer_list = compute_kmer_frequencies(
        seqs=[i['sequence'] for i in test_data if
              i['species_label'] == s],
        kmer_length=kmer_length
      )

      js_divergence = np.sum(
        scipy.spatial.distance.jensenshannon(
          kmer_frequencies_gt,
          kmer_frequencies_generated)
      )
      kmer_results[kmer_length].append(js_divergence)
      mean_js_divergence += js_divergence
      print(
        f"\tJS divergence with k={kmer_length} : {js_divergence}")
    print(
      f"\tMean JS divergence : {mean_js_divergence / len(kmer_lengths):0.2f}")

  for k, v in kmer_results.items():
    weighted_kmer_js = (np.array(v) * np.array(
      list(val_weights.values()))).sum()
    print(
      f"Weighted mean JS divergence across classes with k={k}: {weighted_kmer_js:0.2f}")
    result_dict[f"{k}mer JS"] = weighted_kmer_js

  ## DISCRIMINATOR AUROC
  # Hyperparams
  d_model = 128
  n_layer = 2

  batch_size = 8
  lr = 1e-4
  epochs = 5

  disc_data = [
    {'sequence': i['sequence'], 'species_label': 0}
    for i in test_data]
  for s in range(10):
    filter_val_ds = val_dataset.filter(
      lambda x: x['species_label'] == s,
      num_proc=len(os.sched_getaffinity(0)))
    indices = np.random.permutation(
      np.arange(len(filter_val_ds)))[:num_samples_per_class]
    disc_data.extend(
      [{'sequence': i['sequence'], 'species_label': 1}
       for i in filter_val_ds.select(indices)]
    )
  print(f"Size of discriminator dataset: {len(disc_data)}")
  disc_dataset_hf = datasets.Dataset.from_list(
    disc_data)
  disc_dataset_hf = disc_dataset_hf.train_test_split(
    test_size=0.1, seed=42)

  disc_dataset_train = custom_datasets.ten_species_dataset.TenSpeciesDataset(
    split='train',
    tokenizer=tokenizer,
    max_length=classifier_config.model.length,
    rc_aug=False,
    add_special_tokens=classifier_config.data.add_special_tokens,
    dataset=disc_dataset_hf['train']
  )

  disc_dataset_val = custom_datasets.ten_species_dataset.TenSpeciesDataset(
    split='test',
    tokenizer=tokenizer,
    max_length=classifier_config.model.length,
    rc_aug=False,
    add_special_tokens=classifier_config.data.add_special_tokens,
    dataset=disc_dataset_hf['test']
  )

  disc_train_dl = torch.utils.data.DataLoader(
    disc_dataset_train,
    batch_size=batch_size,
    num_workers=0,
    pin_memory=True,
    shuffle=True)

  disc_val_dl = torch.utils.data.DataLoader(
    disc_dataset_val,
    batch_size=batch_size,
    num_workers=0,
    pin_memory=True,
    shuffle=False)

  hyena_config = transformers.AutoConfig.from_pretrained(
    'LongSafari/hyenadna-small-32k-seqlen-hf',
    d_model=d_model,
    n_layer=n_layer,
    trust_remote_code=True)
  disc_model = transformers.AutoModelForSequenceClassification.from_config(
    hyena_config,
    pretrained=False,
    num_labels=2,
    problem_type='single_label_classification',
    trust_remote_code=True)

  optimizer = torch.optim.AdamW(
    disc_model.parameters(), lr=lr, weight_decay=0,
    betas=(0.9, 0.999), eps=1e-8)

  disc_model.to('cuda')
  losses = []
  auroc_list = []
  for ep in tqdm(range(epochs), desc='Epochs'):
    # Train loop:
    disc_model.train()
    train_pbar = tqdm(disc_train_dl, desc='Train',
                      leave=False)
    for batch in train_pbar:
      labels = batch['species_label'].to('cuda')
      logits = disc_model(
        batch['input_ids'].to('cuda')).logits
      loss = torch.nn.functional.cross_entropy(
        logits.view(-1, logits.size(-1)),
        labels,
        ignore_index=-100,
        reduction='mean')
      optimizer.zero_grad()
      loss.backward()
      optimizer.step()
      train_pbar.set_postfix({'loss': loss.item()})
      losses.append(loss.item())
    # Val loop:
    disc_model.eval()
    disc_labels = []
    disc_preds = []
    for batch in disc_val_dl:
      disc_labels.append(
        batch['species_label'].numpy())
      disc_preds.append(
        disc_model(
          batch['input_ids'].to('cuda')
        ).logits[..., 1].detach().to('cpu').numpy()
      )
    disc_labels = np.concatenate(disc_labels)
    disc_preds = np.concatenate(disc_preds)
    auroc = roc_auc_score(y_true=disc_labels, y_score=disc_preds)
    auroc_list.append(auroc)
    print(f"Ep {ep} - AUROC score {auroc}")
  result_dict["Disc AUROC"] = auroc_list[-1]
  del disc_model
  print('*****************************')
  return result_dict


@hydra.main(version_base=None, config_path='../configs',
            config_name='config')
def main(config: omegaconf.DictConfig) -> None:
  # Reproducibility
  L.seed_everything(config.seed)
  os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
  torch.use_deterministic_algorithms(True)
  torch.backends.cudnn.benchmark = False

  _print_config(config, resolve=True)
  print(f"Checkpoint: {config.eval.checkpoint_path}")

  tokenizer = dataloader.get_tokenizer(config)
  pretrained = diffusion.Diffusion.load_from_checkpoint(
    config.eval.checkpoint_path,
    tokenizer=tokenizer,
    config=config, logger=False)
  pretrained.eval()

  # Generate samples
  if not os.path.exists(config.eval.generated_samples_path):
    samples_per_class = {}
    classes = range(config.data.num_classes)
    for species in classes:
      config.guidance.condition = species
      print("Guidance:", ", ".join([f"{k.capitalize()} - {v}" for k, v in config.guidance.items()]))
      samples = []
      for _ in tqdm(
        range(config.sampling.num_sample_batches), desc='Gen. batches', leave=False):
        sample = pretrained.sample()
        samples.extend(pretrained.tokenizer.batch_decode(sample))
      samples_per_class[species] = samples
    with open(config.eval.generated_samples_path, 'w') as f:
      json.dump(samples_per_class, f, indent=4) # type: ignore
  else:
    with open(config.eval.generated_samples_path, 'r') as f:
      samples_per_class = json.load(f)
    samples_per_class = {int(k): v for k, v in samples_per_class.items()}

  # Run eval pipeline
  hydra.core.global_hydra.GlobalHydra.instance().clear()
  result_dict = run_eval_pipeline(
    samples_per_class,
    num_samples_per_class=config.sampling.num_sample_batches*config.sampling.batch_size,
    train_weights_path=config.eval.train_weights_path,
    val_weights_path=config.eval.val_weights_path,
    eval_classifier_checkpoint_path=config.eval.eval_classifier_checkpoint_path,
    kmer_freqs_path=config.eval.kmer_freqs_path)
  result_dict['Seed'] = config.seed
  result_dict['T'] = config.sampling.steps
  result_dict = result_dict | {k.capitalize(): v for k, v in config.guidance.items()}
  result_dict['Num Samples'] = sum([len(v) for v in samples_per_class.values()])
  results_df = pd.DataFrame.from_records([result_dict])
  results_df.to_csv(config.eval.results_csv_path)

if __name__ == '__main__':
  main()